首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维 向量总可由α1,α2,…,αn线性表示.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维 向量总可由α1,α2,…,αn线性表示.
admin
2018-01-23
47
问题
设α
1
,α
2
,…,α
n
为n个n维向量,证明:α
1
,α
2
,…,α
n
线性无关的充分必要条件是任一n维
向量总可由α
1
,α
2
,…,α
n
线性表示.
选项
答案
设α
1
,α
2
,…,α
n
线性无关,对任意的n维向量α,因为α
1
,α
2
,…,α
n
,α一定线性 相关,所以α可由α
1
,α
2
,…,α
n
唯一线性表示,即任一n维向量总可由α
1
,α
2
,…,α
n
线 性表示. 反之,设任一n维向量总可由α
1
,α
2
,…,α
n
线性表示, [*]则e
1
,e
2
,…,e
n
可由α
1
,α
2
,…,α
n
线性表示,故α
1
, α
2
,…,α
n
的秩不小于e
1
,e
2
,…,e
n
的秩,而e
1
,e
2
,…,e
n
线性无关,所以α
1
,α
2
,…,α
n
的秩 一定为n,即α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/IfX4777K
0
考研数学三
相关试题推荐
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是_______.
若f’(x)=sinx,则f(x)的原函数之一是
设函数f(x)在区间[0.1]上连续,在(0,1)内可导,且,试证(1)存在,使f(η)=η.(2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1求f’(x);
设f(x)、g(x)在区间[一a,a](a>0)上连续.g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明(2)利用(1)的结论计算定积分
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且证明存在ξ∈(0,3),使f’’(ξ)=0.
已知二次型厂(x1,x2,x3)=xTAx的矩阵A=(aij)满足a11+a22+a33=-6,AB=C,求出该二次型.
随机试题
(1)ThanksgivingmaybeanofficialdayofgratitudeintheU.S.,butresearchsuggeststhatifyoumaketimefor"thankyou"ev
Homesicknessisverycommonamongstudentsawayfromhome–eventhosewhohadpreviouslybeenawayatovernightcamportraveled
肺心病急性加重期的治疗关键是
低热超高热
手术间的消毒宜采用()。
在下列四个选项中,税务机关有权依法直接核定纳税人的应纳税额有:
经国家审批,某企业计划建造一个核电站,其主体设备核反应堆将会对当地的生态环境产生一定的影响。根据法律规定,企业应在该项设备使用期满后将其拆除,并对造成的污染进行整治。20×1年1月1日,该项设备建造完成并交付使用,建造成本共计100000万元。预计使用年限
宋代对迭山艺术更为讲究,爱石成癖的宋徽宗,他所筑的震岳是历史上规模最大、结构最奇;巧、以石为主的假山。()
华夫脱运动
东升商城公关部职工的平均工资是营业部职工的2倍,因此,公关部职工比营业部职工普遍有较高的收入。以下哪项如果为真,将最能削弱上述论证?
最新回复
(
0
)