首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(—1,1)内具有二阶连续导数且f"(x)≠0。证明: (Ⅰ)对于任意的x∈(—1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
设f(x)在(—1,1)内具有二阶连续导数且f"(x)≠0。证明: (Ⅰ)对于任意的x∈(—1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
admin
2017-01-21
20
问题
设f(x)在(—1,1)内具有二阶连续导数且f"(x)≠0。证明:
(Ⅰ)对于任意的x∈(—1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
选项
答案
(Ⅰ)由拉格朗日中值定理,对任意X∈(—1,1),x≠0,存在θ∈(0,1)使f(x)=f(0)+xf’(θx),(θ与x有关)。又由f"(x)连续且f"(x)≠0,故f"(x)在(—1,1)不变号,所以f’(x)在(—1,1)严格单调,θ唯一。 (Ⅱ)由(Ⅰ)中的式子,则有 [*] 由上式可得θ的表达式,并令x→0取极限得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/IhH4777K
0
考研数学三
相关试题推荐
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱,才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数).
已知线性方程组(I)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,P)T.P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设函数y=y(x)往(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
利用定积分计算下列极限:
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则∫01f(x)dx=_________.
微分方程满足y(0)=一1的特解是___________.
随机试题
煎法的菜肴适用于圆筒状或加工成扁平状的原料,因而多加热原料两面使之成熟。()
试述心脏骤停的临床表现和心肺复苏的适应证。
皮下埋植的部位,应在肘关节上
以下属于随机抽样调查的是()。
施工合同争议解决的方式包括()。
背景资料:某施工单位承包了一机电安装工程项目,工程内容包括工艺热力管道安装和一座钢结构框架的安装。合同规定,钢材等主要材料由业主供应。施工单位安排由该单位的甲、乙两个施工队分别承担施工任务。施工中发生如下事件:事件一:在工程中期质量进度大检查中发现,承
你是如何理解教学要面向全体的?
第二次世界大战期间,海洋上航行的商船常常遭到德国轰炸机的袭击,许多商船都先后在船上架设了高射炮。但是,商船在海上摇晃得比较厉害,用高射炮射击天上的飞机是很难命中的。战争结束后,研究人员发现,从整个战争期间架设过高射炮的商船的统计资料看,击落敌机的命中率只有
Writeanessayof160-200wordsbasedonthefollowingdrawing.Inyouressay,youshould1.describethedrawingbriefly,2.e
你找到上周丢的那本书了吗?
最新回复
(
0
)