首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT; (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT; (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
admin
2017-12-29
48
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
(Ⅰ)证明二次型f对应的矩阵为2αα
T
+ββ
T
;
(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
。
选项
答案
(Ⅰ)f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
=2(x
1
,x
2
,x
3
)[*](a
1
,a
2
,a
3
)[*]+(x
1
,x
2
,x
3
)[*](b
1
,b
2
,b
3
)[*] =(x
1
,x
2
,x
3
)(2αα
T
)[*]+(x
1
,x
2
,x
3
)(ββ
T
)[*] =(x
1
,x
2
,x
3
)(2αα
T
+ββ
T
)[*] 所以二次型f对应的矩阵为2αα
T
+ββ
T
。 (Ⅱ)设A=2αα
T
+ββ
T
,由于|α|=1,α
T
β=β
T
α=O,则 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
1
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β=2αα
T
β+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量。 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值。故f在正交变换下的标准形为2y
1
2
+y
2
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/IhX4777K
0
考研数学三
相关试题推荐
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,一1]T,ξ2=[一1.,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T.计算:Anβ.
计算(a>0是常数).
已知则I=()
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
已知一2是的特征值,其中b≠0是任意常数,则x=________.
求微分方程(4一x+y)dx一(2一x—y)dy=0的通解.
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是________.
微分方程y″+y′=x2的特解形式为__________.
设f(t)连续并满足f(t)=cos2t+∫0xf(t)sinsds,求f(t)。
随机试题
“计件工资奖励工资”的提出者是()
Junglecountryisnotfriendlytoman,butitispossibletosurvivethere.Youmusthavetheright【21】andyoumustknowafewi
A.控制系统B.受控系统C.反馈信息D.控制信息动脉壁上的压力感受器感受动脉血压变化,使相应的传入神经产生的动作电位可看作是
不能用于检测血清总IgE的是()
以下费用中,属于监理直接成本的有( )。
平硐开拓方式与立井、斜井开拓方式的主要区别是()。
A、64B、72C、80D、88D(左下数字-右上数字)×(左上数字-右下数字)=中间数字。(14-3)×(18-10)=(88),故本题选D。
茶树:茶叶:茶水
设L是圆域x2+y2≤-2x的正向边界曲线,则(x3-y)dx+(x-y3)dy等于()。
ThephotographertimedhisvisittoIndonesiato______withtheharvestfestivalthattakesplaceeachyearthroughoutthecoun
最新回复
(
0
)