首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系 ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T. 求方程组(I)和(Ⅱ)的公共解.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系 ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T. 求方程组(I)和(Ⅱ)的公共解.
admin
2018-09-20
79
问题
已知线性方程组(I)
及线性方程组(Ⅱ)的基础解系
ξ
1
=[一3,7,2,0]
T
,ξ
2
=[一1,一2,0,1]
T
.
求方程组(I)和(Ⅱ)的公共解.
选项
答案
方程组(Ⅱ)的通解为 k
1
ξ
1
+k
2
ξ
2
=k
1
[-3,7,2,0]
T
+k
2
[-1,一2,0,1]
T
=[-3k
1
一k
2
,7k
1
-2k
2
,2k
1
,k
2
]
T
,其中k
1
,k
2
是任意常数.将该通解代入方程组(I)得, 3(-3k
1
-k
2
)一(7k
1
-2k
2
)+8(2k
1
)+k
2
=一16k
1
+16k
1
—3k
2
+3k
2
=0, (一3k
1
-k
2
)+3(7k
1
-2k
2
)一9(2k
1
)+7k
2
=一21k
1
+21k
1
—7k
2
+7k
2
=0,即方程组(Ⅱ)的通解均满足方程组(I),故(Ⅱ)的通解 k
1
[一3,7,2,0]
T
+k
2
[一1,一2,0,1]
T
即是方程组(I),(Ⅱ)的公共解.
解析
转载请注明原文地址:https://kaotiyun.com/show/IjW4777K
0
考研数学三
相关试题推荐
设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量。
设A,B为三阶矩阵,且AB=A一B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P一1AP,P一1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A一B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
设X~N(1,σ2),Y~N(2,σ2)为两个相互独立的总体,X1,X2,…,Xm与Y1,Y2,…,Yn分别为来自两个总体的简单样本,S12=服从________分布.
设(ay一2x一y2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=________,b=________.
设(X,Y)的联合密度函数为f(x,y)=求fX|Y(X|Y).
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
(88年)已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
随机试题
设计任务:请阅读下面的学生信息和语言素材,设计20分钟的口语教学方案。教案没有固定格式,但须包含下列要点:teachingobjectivesteachingcontentskeyanddifficultpoin
乳腺癌最常发生于乳房的
此病例应辨证为()治疗方法以下列何者为宜()
城市房屋拆迁是指取得房屋拆迁许可证的拆迁人拆除(),并对被拆迁房屋的所有人进行补偿或安置的行为。
(2018年)根据民事法律制度的规定,下列情形中,沉默可以视为行为人的意思表示的有()。
最常见的利率违规行为是()。
补偿性工资差距:指不同工作的非货币特性所引起的工资差别。根据上述定义,下列选项中,与补偿性工资无关的是()。
根据下列文字回答下列问题。2003年6月份,“国房景气指数”达到107.04,比5月份上升0.76点,比去年同期上升2.39点。具体的各分类指数情况如下。6月份竣工面积分类指数为111.46,与5月份基本持平,比去年同期上升7.42点。
лхфНОПΓд
地球大气与海洋是相互作用的。下列作用过程及其结果符合事实的是:
最新回复
(
0
)