首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系 ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T. 求方程组(I)和(Ⅱ)的公共解.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系 ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T. 求方程组(I)和(Ⅱ)的公共解.
admin
2018-09-20
97
问题
已知线性方程组(I)
及线性方程组(Ⅱ)的基础解系
ξ
1
=[一3,7,2,0]
T
,ξ
2
=[一1,一2,0,1]
T
.
求方程组(I)和(Ⅱ)的公共解.
选项
答案
方程组(Ⅱ)的通解为 k
1
ξ
1
+k
2
ξ
2
=k
1
[-3,7,2,0]
T
+k
2
[-1,一2,0,1]
T
=[-3k
1
一k
2
,7k
1
-2k
2
,2k
1
,k
2
]
T
,其中k
1
,k
2
是任意常数.将该通解代入方程组(I)得, 3(-3k
1
-k
2
)一(7k
1
-2k
2
)+8(2k
1
)+k
2
=一16k
1
+16k
1
—3k
2
+3k
2
=0, (一3k
1
-k
2
)+3(7k
1
-2k
2
)一9(2k
1
)+7k
2
=一21k
1
+21k
1
—7k
2
+7k
2
=0,即方程组(Ⅱ)的通解均满足方程组(I),故(Ⅱ)的通解 k
1
[一3,7,2,0]
T
+k
2
[一1,一2,0,1]
T
即是方程组(I),(Ⅱ)的公共解.
解析
转载请注明原文地址:https://kaotiyun.com/show/IjW4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续可导,证明:∫abf(x)dx|+∫ab|f’(x)|dx.
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un一1)(n=1,2,…),u0∈[a,b],证明:级数(un+1一un)绝对收敛.
设y(x)为微分方程y"一4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(x)dx=________.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.证明:设α1=求出可由两组向量同时线性表示的向量.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
设两曲线y=x2+ax+b与一2y=一1+xy3在点(一1,1)处相切,则a=_________,b=________.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求
设二元函数f(x,y)=|x一y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()
随机试题
课外校外教育与课内教育共同之处在于:它们都是()
牙周塞治剂的作用包括①保护伤口;②止血;③止痛;④防止感染;⑤固定龈瓣;⑥避免手术牙咀嚼食物
下列关于粉末直接压片的说法正确的是
饮片呈短段状,茎略呈方柱形,节略膨大,其上有对生叶痕,气微,味极苦的是()。
水的运动黏性系数随温度的升高而()。
根据世界贸易组织《服务贸易总协定》,下列哪一选项是正确的?()
一间宿舍可住多个学生,则实体宿舍和学生之间的联系是()。
字符串“%%\”ABCDEF\“﹨﹨”的长度是()。
Youdidn’tputonmoreclothes;otherwiseyou______cold.
Manyfloodravagedfarmerssay______(他们别无选择只得解雇一些工人).
最新回复
(
0
)