首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为( )
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为( )
admin
2017-03-08
87
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
-α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Aχ=β通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
-α
3
=β知
即γ
1
=(1,2,-1,0)
T
是Aχ=β的解.同理γ
2
=(1,1,1,1)
T
,γ
3
(2,3,1,2)
T
也均是Aχ=B的解,那么
η
1
=γ
1
-γ
2
=(0,1,-2,-1)
T
,
η
2
=γ
3
-γ
2
=(1,2,0,1)
T
是导出组Aχ=0的解,并且它们线性无关.于是Aχ=0至少有两个线性无关的解向量,有n-r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,有r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2.所以必有r(A)=2,从而n-r(A)=2,因此η
1
,η
2
就是Aχ=0的基础解系,根据解的结构,所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/Iju4777K
0
考研数学一
相关试题推荐
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
微分方程y"-2y’+2y=ex的通解为________.
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
幂级数x2n-1的收敛半径R=___________.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
设幂级数的收敛半径分别为,则幂级数的收敛半径为().
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a1-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
随机试题
FakeholidayvillawebsitespromptwarningA)DuringtheBritishwinter,thethoughtoftwoweeksinacoastalvilla(别墅)w
下列属于国际商务谈判的特殊性的是()
有关腺泡细胞癌描述中错误的是
属于功能位的颈椎摄影体位是
A、 B、 C、 D、 E、 C
摘取方式的特点是配送中心的______是固定的,对于货物______的情况,这种配货方式便于管理和实现现代化。
“完整地接纳”的含义是()。
体育教学过程具有一定的特征,下列不正确的选项是()。
心理辅导的辅导员与接受辅导的学生之间的关系()。
设,其中f,g均可微,则=_______.
最新回复
(
0
)