首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为( )
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为( )
admin
2017-03-08
58
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
-α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Aχ=β通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
-α
3
=β知
即γ
1
=(1,2,-1,0)
T
是Aχ=β的解.同理γ
2
=(1,1,1,1)
T
,γ
3
(2,3,1,2)
T
也均是Aχ=B的解,那么
η
1
=γ
1
-γ
2
=(0,1,-2,-1)
T
,
η
2
=γ
3
-γ
2
=(1,2,0,1)
T
是导出组Aχ=0的解,并且它们线性无关.于是Aχ=0至少有两个线性无关的解向量,有n-r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,有r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2.所以必有r(A)=2,从而n-r(A)=2,因此η
1
,η
2
就是Aχ=0的基础解系,根据解的结构,所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/Iju4777K
0
考研数学一
相关试题推荐
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
微分方程y"-2y’+2y=ex的通解为________.
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
A、发散B、条件收敛C、绝对收敛D、收敛性与λ有关C
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
将函数f(x)=展开成x-1的幂级数,并指出其收敛区间.
幂级数的收敛区间为________.
随机试题
论述中国共产党的领导是中国特色社会主义制度的最大优势。
法西斯国家的基本特征是什么?
试论知识产权的特征。
政府对招标投标活动实施行政监督必须遵循依法行政的基本要求,其基本原则有()等。
单一项目动态财务评价指标有()。
在收入分配统计中,下列各项属于经常转移项目的有()。
下列各项中,()属于扁平化销售渠道最显著的特点。
系统发生振荡时,距离Ⅲ段保护不受振荡影响,其原因是()。
文学和影视既密切相关、相互渗透,同时又有不同的质的规定性和巨大_________,常常使人们陷入无休无止的_________,甚至让人无所适从。依次填入画横线部分最恰当的一项是()
【S1】【S8】
最新回复
(
0
)