首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T. 求方程组(α1,α2,α3,α4,α5)x=α5的通解.
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T. 求方程组(α1,α2,α3,α4,α5)x=α5的通解.
admin
2016-03-05
129
问题
设线性非齐次方程组Ax=(α
1
,α
2
,α
3
,α
4
)x=α
5
有通解k(一1,2,0,3)
T
+(2,一3,1,5)
T
.
求方程组(α
1
,α
2
,α
3
,α
4
,α
5
)x=α
5
的通解.
选项
答案
线性非齐次方程组(α
1
,α
2
,α
3
,α
4
+α
5
)x=α
5
(2) 则有r(α
1
,α
2
,α
3
,α
4
+α
5
)=f(α
1
,α
2
,α
3
,α
4
+α
5
,α
5
)=3故方程组(2)的通解的结构为k
1
ξ
1
+k
2
ξ
2
+η. [*] 其中k
1
,k
2
是任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/J434777K
0
考研数学二
相关试题推荐
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=1,且a1+2a2=a3,A*是A的伴随矩阵.求矩阵A;
证明:∫aa+2πln(2+cosx)·cosxdx>0,其中a为任意常数.
计算极限.
设函数f(x)在[a,b]上二阶可导,f’(a)=f’(b)=0,证明:存在ξ∈(a,b),使得|f”(ξ)|≥|f(b)-f(a)|.
设函数f(x),g(x)在[a,b]内二阶可导,g”(x)≠0,f(a)=g(a)=f(b)=g(b)=0,证明:在(a,b)内g(x)≠0;
已知f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,f’(0)=0,证明:在区间(0,1)内至少有一点ξ,使f”(ξ)-f(ξ)=0.
设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2一α3+α1,Aα3=α1+α2.(1)求A的全部特征值;(2)A是否可对角化?
求微分方程y(6)+2y(3)+y=0的通解.
已知函数y=y(x)在任意点x处的增量,且当△x→0时,α是△x的高阶无穷小,y(0)=π,则y(1)等于().
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,
随机试题
驾驶机动车遇到这种情况要靠右侧停车等待。
当旧的经济关系日益腐朽,新的经济关系日益形成时,旧的道德体系也必将为新的道德体系所代替。人们的道德水平必然随着社会实践由低级到高级的发展而不断进步。这说明【】
日本血吸虫:中华支睾吸虫:
女性,26岁。间歇性牙龈出血伴月经过多1年。体检:双下肢可见散在出血点及紫癜,肝脾不大。血红蛋白120g/L,红细胞4.6×1012/L,白细胞5.5×109/L,分类正常,血小板25×109/L。特发性血小板减少性紫癜诊断要点不包括
十二指肠癌较罕见发生在哪段?()。
根据《中华人民共和国水污染防治法》对饮用水水源保护区的有关规定,下列说法中正确的是()。
我国地貌景观可分为花岗岩山地、岩溶山水、丹霞地貌等等,下列哪一组景观是上述三种地貌景观的典型代表()。
一线贯通是公文中显示主旨的方法之一,指的是主旨分散于一篇文章各个部分的小标题、小观点或者是条旨句、段旨句中,起一个穿针引线、提纲挈领的作用。()
[*]
HereIwanttotrytogiveyouananswertothequestion:whatpersonalqualitiesare【C1】______inateacher?Probablynotwope
最新回复
(
0
)