首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T. 求方程组(α1,α2,α3,α4,α5)x=α5的通解.
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T. 求方程组(α1,α2,α3,α4,α5)x=α5的通解.
admin
2016-03-05
152
问题
设线性非齐次方程组Ax=(α
1
,α
2
,α
3
,α
4
)x=α
5
有通解k(一1,2,0,3)
T
+(2,一3,1,5)
T
.
求方程组(α
1
,α
2
,α
3
,α
4
,α
5
)x=α
5
的通解.
选项
答案
线性非齐次方程组(α
1
,α
2
,α
3
,α
4
+α
5
)x=α
5
(2) 则有r(α
1
,α
2
,α
3
,α
4
+α
5
)=f(α
1
,α
2
,α
3
,α
4
+α
5
,α
5
)=3故方程组(2)的通解的结构为k
1
ξ
1
+k
2
ξ
2
+η. [*] 其中k
1
,k
2
是任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/J434777K
0
考研数学二
相关试题推荐
函数f(x)=ln(secx+tanx)是().
计算极限.
证明:
若f(x),g(x)在[a,b]上连续,证明:[∫abf(x)dx]2≤(b-a)∫abf2(x)dx.
设f(x)在[a,b](a>0)上连续,在(a,b)内可导,f(a)=0,f(b)=2,f’(x)≠0,证明:存在ξ,η∈(a,b),使得
设函数f(x)在(0,+∞)内有二阶导数,且满足f(0)=0,f”(x)<0,0<a<b,则当a<x<b,恒有().
已知函数y=y(x)在任意点x处的增量,且当△x→0时,α是△x的高阶无穷小,y(0)=π,则y(1)等于().
已知点A(2,-1,7)沿向量a=(8,9,-12)的方向得线段AB,且|AB|=34,则点B坐标为________.
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a]将g(x)的最小值当作a的函数,使其等于f(a)-a2-1,并求f(x).
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
随机试题
男性,40岁,于建筑工地干活时,突然左侧肢体瘫痪。查体时发现左侧肢体远端痛、温觉存在,位置觉丧失,图形觉、重量觉存在。则该病人存在哪种类型的感觉障碍
A.等中心给角照射B.切线给角照射C.水平给角照射D.楔形板给角照射E.多野交叉给角照射患者男,52岁。胸段食管癌术后拟行放疗,最常采用
男性,60岁,突发胸骨后压榨性疼痛2小时,并向左肩放射,伴多汗、恶心、气短假定上述患者在社区医院就诊,诊断为急性心肌梗死,除下列哪项处理外均为正确措施
患者,女,28岁。因多食、消瘦、怕热、突眼2年多,加重伴2周而入院。病程中时常有每日大便次数增多或者腹泻的现象,近来加重。入院检:消瘦,突眼。甲状腺肿大,可触及震颤。伸舌及伸手可见细震颤。T37.8℃,P116次/分,呼吸平稳,BP130/80mmHg
女,56岁,高血压病史,接诊医生诊断其患有药物性牙龈增生。该患者的治疗方案,应不涉及
患儿,男,1岁。腹痛、哭闹、呕吐,伴果酱样血便3天,发热1天。查体:面色苍白,出汗。腹肌紧张,有压痛和反跳痛,脐右上方扪及腊肠形肿块,右下腹空虚。最佳的处理是()
为避免双层隔声窗产生共振与吻合效应,两扇窗玻璃在安装与选材上应注意:(2007。9)
为每个目标的各个实现方案,评定一定的优劣分数,然后按一定的算法规则,给各方案算出一个综合总分,最后按此综合总分的高低选择方案的方法是()。
教学的根本目的是()
Youshouldspendabout20minutesonQuestions27-40,whicharebasedonReadingPassage3below.Thecreati
最新回复
(
0
)