首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数 g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a] 求出使g(x)取最小值的x值。
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数 g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a] 求出使g(x)取最小值的x值。
admin
2022-10-08
55
问题
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数
g(x)=∫
-a
a
|x-t|f(t)dt,a>0,x∈[-a,a]
求出使g(x)取最小值的x值。
选项
答案
g’(x)=0,则 ∫
-a
x
f(t)dt+∫
a
x
f(t)dt=0 设t=-u,dt=-du,并注意到f(-t)=f(t),有 ∫
-a
x
f(t)dt=-∫
a
x
f(-u)du=∫
-x
a
f(-t)dt=∫
-x
a
f(t)dt 因而 ∫
-a
x
f(t)dt+∫
a
x
f(t)dt=∫
-x
a
f(t)dt+∫
a
x
f(t)dt=∫
-x
x
f(t)dt=0 即2∫
0
x
f(t)dt=0 又因f(t)>0,故x=0,由①式可得,g"(x)|
x=0
=2f(x)|
x=0
>0,故 g(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
tf(t)dt 为最小值。
解析
转载请注明原文地址:https://kaotiyun.com/show/yYR4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上可微,x∈[a,b],a<f(x)<b,且f′(x)≠1,x∈(a,b).试证:在(a,b)内方程f(x)=x有唯一实根.
求下列极限:
设f(x)在[a,b](a>0)上连续,在(a,b)内可导,且f(a)=f(b)=1,证明存在ξ,η∈(a,b)使
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f′(ξ)=-1.
求幂级数的收敛域和和函数.
设向量组试问(1)a为何值时,向量组线性无关?(2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
计算下列定积分:
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设f(x)是以T为周期的连续函数.证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k,
随机试题
关于中央乳糜管,哪项错误()
蠕形住肠线虫致病的主要机制为
A.祛风解痉B.软坚散结C.两者均是D.两者均非黄药子的功效是()
维持子宫正常位置的是
团结协作的基础是
以下属于学科中心课程的是()
有一个400m环形跑道,甲、乙两人同时从同一地点同方向出发.甲以0.8m/s的速度步行,乙以2.4m/s的速度跑步,乙在第2次追上甲时用了()s.
在中国实行了一千多年的科举制度正式被废除,是在
TheMediaintheU.S.ThemediaplaysavitalroleasaguardianofU.S.democracy./U.S.mediahavetraveledalongroads
Thinktwicenexttimewhensomeoneasksyoufor"fiveminutesofyourtime"itcouldcostyoumorethanyouthink.ABritishpro
最新回复
(
0
)