首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数 g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a] 求出使g(x)取最小值的x值。
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数 g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a] 求出使g(x)取最小值的x值。
admin
2022-10-08
48
问题
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数
g(x)=∫
-a
a
|x-t|f(t)dt,a>0,x∈[-a,a]
求出使g(x)取最小值的x值。
选项
答案
g’(x)=0,则 ∫
-a
x
f(t)dt+∫
a
x
f(t)dt=0 设t=-u,dt=-du,并注意到f(-t)=f(t),有 ∫
-a
x
f(t)dt=-∫
a
x
f(-u)du=∫
-x
a
f(-t)dt=∫
-x
a
f(t)dt 因而 ∫
-a
x
f(t)dt+∫
a
x
f(t)dt=∫
-x
a
f(t)dt+∫
a
x
f(t)dt=∫
-x
x
f(t)dt=0 即2∫
0
x
f(t)dt=0 又因f(t)>0,故x=0,由①式可得,g"(x)|
x=0
=2f(x)|
x=0
>0,故 g(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
tf(t)dt 为最小值。
解析
转载请注明原文地址:https://kaotiyun.com/show/yYR4777K
0
考研数学三
相关试题推荐
(1)设α1,α3,β1,β2均为3维列向量,且α1,α3线性无关,β1,β2线性无关,证明存在非零向量ξ,使得ξ既可由α1,α3线性表示,又可由β1,β2线性表示;(2)当时,求所有的既可由α1,α2线性表示,又可由β1,β2线性表示的向量ξ.
设向量组α1,α2,…,αm(m>1)线性无关,且β=α1+α2+…+αm,证明:β-α1,β-α2,…,β-αm线性无关.
求幂级数的收敛域和和函数.
设有两条抛物线记它们交点的横坐标的绝对值为an,求级数的和.
设A、B为3阶相似非零实矩阵,矩阵A=(aij)满足aij=Aij(i,j=1,2,3),Aij是aij的代数余子式,矩阵B满足|E+2B|=|E+3B|=0,则矩阵A*+E可逆,方程组(B—E)x=0没有非零解.
设A为2阶矩阵,α为非零向量,但不是A的特征向量,且满足A2α+Aα-2α=0,试证α,Aα线性无关;
设幂级数的系数满足a0=2,nan=an-1+n-1,n=1,2,…,求此幂级数的和函数S(x),其中x∈(-1,1).
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
设函数f(x)在点x0的某邻域内具有一阶连续导数,则()
设,其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1;(Ⅰ)求f’(x);(Ⅱ)讨论f’(x)在(-∞,+∞)上的连续性.
随机试题
下列骨折中,最不稳定的是
下列选项中,可作为清洁生产中的新用水量指标的是()。
会计职业道德教育的途径有()。
HACCP是()的缩写,它是一个保证食品安全的预防性管理体系。
学生在课堂上向你提出一个意想不到又很有价值的问题,你不能马上做出正确的解答。这时,正确的做法是()。
贝加尔湖曾是中国古代北方游牧民族主要活动地区,汉代苏武牧羊之地,《中俄尼布楚条约》签订以后划给俄国。()
根据以下资料,回答下列问题。下列说法正确的是()。
表格国家中,2012年1~9月中国从亚洲国家(地区)进口消费品比从欧洲国家少()亿美元。
也许是看到了“群体智慧”所爆发的惊人力量,很多风险投资开始重新__________“人”的作用。与__________的新搜索技术相比,他们更愿意将赌注压在混合型搜索引擎的研发上,即利用人的智慧弥补机器算法的不足。这种搜索引擎有一个__________的名
HowtoWriteaBookReviewI.ThedefinitionofabookreviewA.adescriptiveandcriticalorevaluativeaccountofabookB.a
最新回复
(
0
)