首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数 g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a] 求出使g(x)取最小值的x值。
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数 g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a] 求出使g(x)取最小值的x值。
admin
2022-10-08
37
问题
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数
g(x)=∫
-a
a
|x-t|f(t)dt,a>0,x∈[-a,a]
求出使g(x)取最小值的x值。
选项
答案
g’(x)=0,则 ∫
-a
x
f(t)dt+∫
a
x
f(t)dt=0 设t=-u,dt=-du,并注意到f(-t)=f(t),有 ∫
-a
x
f(t)dt=-∫
a
x
f(-u)du=∫
-x
a
f(-t)dt=∫
-x
a
f(t)dt 因而 ∫
-a
x
f(t)dt+∫
a
x
f(t)dt=∫
-x
a
f(t)dt+∫
a
x
f(t)dt=∫
-x
x
f(t)dt=0 即2∫
0
x
f(t)dt=0 又因f(t)>0,故x=0,由①式可得,g"(x)|
x=0
=2f(x)|
x=0
>0,故 g(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
tf(t)dt 为最小值。
解析
转载请注明原文地址:https://kaotiyun.com/show/yYR4777K
0
考研数学三
相关试题推荐
设f(x)连续,且求f(0).
确定常数a使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明:向量组α,Aα1,…,Am-1α线性无关.
已知3阶矩阵A满足Aαi=iαi,i=1,2,3,其中α1=(1,0,0)T,α2=(0,1,1)T,α3=(0,0,1)T,试求矩阵A.
试证当x>0时,(x2-1)lnx≥(x-1)2.
设y=g(x,z),而x是由方程f(x-z,xy)=0所确定的x,y的函数,求
设f(x)在[0,+∞)上连续且单调增加,试证对任何b>a>0,都有下面不等式成立:
设f(x)具有连续导数,求
星形线(0>0)绕Ox轴旋转所得旋转曲面的面积为__________.
随机试题
学习质量与重量、热与体积、遗传与变异等概念之间的关系。这种学习属于()。
WhatdoesYoknapatwaphaCountystandforinFaulkner’snovels?
某患者,45岁、左下颌体部膨胀4年,生长缓慢,检查见下颌骨畸形,张口受限,左下磨牙松动脱落,肿物表面见齿痕,颊侧膨隆:X线片示:左下颌角部阴影约4cm×5cm大小,可见多房性透光区,边缘呈半月切迹,右下双尖牙牙根呈锯齿状吸收,下颌骨下缘受累。其组织来源
【2008年真题】在应用算值工程过程中,可用来确定产品功能重要性系数的方法有()。
下列选项中,属于施工质量因素控制的有()。
下列选项中,属于我国“十一五”时期的战略重点和主要任务的是()。
【《魏玛宪法》】(weimarConstitution)北京师范大学2003年世界近现代史真题;北京师范大学2006年世界通史真题
任何一个无向连通图()最小生成树。
下面哪个因素会造成货币需求减少?()
几年来,我国许多餐厅使用一次性筷子。这种现象受到越来越多的批评,理由是我森林资源不足,把大好的木材用来做一次性筷子,实在是莫大的浪费。但奇怪的是,至今一次性筷子的使用还没有被禁止。以下除哪项外,都能对上文的疑问从某一方面给以解释?
最新回复
(
0
)