首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列结论是否正确?为什么? (Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f′(x0)=g′(x0); (Ⅱ)若x∈(x0-δ,x0+δ,x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同的可导性; (Ⅲ)
判断下列结论是否正确?为什么? (Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f′(x0)=g′(x0); (Ⅱ)若x∈(x0-δ,x0+δ,x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同的可导性; (Ⅲ)
admin
2016-10-26
23
问题
判断下列结论是否正确?为什么?
(Ⅰ)若函数f(x),g(x)均在x
0
处可导,且f(x
0
)=g(x
0
),则f′(x
0
)=g′(x
0
);
(Ⅱ)若x∈(x
0
-δ,x
0
+δ,x≠x
0
时f(x)=g(x),则f(x)与g(x)在x=x
0
处有相同的可导性;
(Ⅲ)若存在x
0
的一个邻域(x
0
-δ,x
0
+δ),使得x∈(x
0
-δ,x
0
+δ)时f(x)=g(x),则f(x)与g(x)在x
0
处有相同的可导性.若可导,则f′(x
0
)=g′(x
0
).
选项
答案
(Ⅰ)不正确.函数在某点的可导性不仅与该点的函数值有关,还与该点附近的函数值有关.仅有f(x
0
)=g(x
0
)不能保证f′(x
0
)=g′(x
0
).正如曲线y=f(x)与y=g(x)可在某处相交但并不相切. (Ⅱ)不正确.例如f(x)=x
2
, g(x)=[*]显然,当x≠0时f(x)=g(x),但f(x)在x=0处可导,而g(x)在x=0处不可导(因为g(x)在x=0不连续). (Ⅲ)正确.由假设可得当x∈(x
0
-δ,x
0
+δ),x≠x
0
时 [*] 故当x→x
0
时等式左右端的极限或同时存在或同时不存在,而且若存在则相等.再由导数定义即可得出结论.
解析
转载请注明原文地址:https://kaotiyun.com/show/J9u4777K
0
考研数学一
相关试题推荐
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
下列各对函数中,两函数相同的是[].
由Y=lgx的图形作下列函数的图形:
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x。,y。)处相切是指它们在(x。,y。)处有共同切线),求a,b的值.
设Q={(x,y,z)丨x2+y2+z2≤1},求.
已知函数f(x,y)在点(0,0)某邻域内连续,且则
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,fˊ(t)>0,(0<t<π/2),若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
设f(x,y)=|x—y|≯(z,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的()
随机试题
压力恢复曲线产生续流段的原因有()等。
因果关系中的原因分为直接原因和间接原因,其中直接原因是主要原因。()
肝脏轻度肿大肝脏重度肿大
分为一级企业和二级企业的公路工程施工企业有()。
某进出口公司出口某种货物100件,每件重300公斤,成交价为CFR釜山,总金额50000元人民币,运价为每吨300元人民币,出口税率为10%,问该公司应付多少运费?应付多少出口关税?(要求列明计算过程)
期货投资者保障基金按照()的原则筹集。
地图是地理学的()。
自助行为是指权利人受到不法侵害之后,为保全或者恢复自己的权利,在情势紧迫而不能及时请求国家机关予以救助的情况下,依靠自己的力量,对他人的财产或自由施加扣押、拘束或其他相应措施的行为。依据上述定义,下列行为中属于自助行为的是()。
Oneofthebasiccharacteristicsofcapitalismistheprivateownershipofthemajormeansofproduction—capital.Theownership
Gavin’sapartmentislocatedonthe
最新回复
(
0
)