设有齐次线性方程组AX=0和βX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A)=秩(B); ④若秩(

admin2021-01-19  34

问题  设有齐次线性方程组AX=0和βX=0,其中A,B均为m×n矩阵,现有四个命题:
①若AX=0的解均是BX=0的解,则秩(A)≥秩(B);
②若秩(A)≥秩(B),则AX=0的解均是BX=0的解;
③若AX=0与BX=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B),则AX=0与BX=0同解.
以上命题中正确的是(    ).

选项 A、①②
B、①③   
C、②④
D、③④

答案B

解析 利用线性方程组同解的基本性质判别之.
仅(B)入选.由命题2.4.7.2知,命题③正确.又命题①也正确,这是因为AX=0的解均是BX=0的解,则AX=0的基础解系是BX=0的基础解系的一部分,因此AX=0的基础解系所含向量个数小于等于BX=0的基础解系所含向量的个数,即
    n一秩(A)≤n一秩(B),秩(A)≥秩(B).
转载请注明原文地址:https://kaotiyun.com/show/JC84777K
0

随机试题
最新回复(0)