首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,.证明:存在ξ∈(0,2),使得f"’(ξ)=2.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,.证明:存在ξ∈(0,2),使得f"’(ξ)=2.
admin
2019-06-28
34
问题
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,
.证明:存在ξ∈(0,2),使得f"’(ξ)=2.
选项
答案
先作一个函数P(x)=ax
3
+bx
2
+cx+d,使得 P(0)=f(0)=1,P’(1)=f’(1)=0,P(2)=[*],P(1)=f(1). [*] 令g(x)=f(x)-P(x),则g(x)在[0,2]上三阶可导,且g(0)=g(1)=g(2)=0,所以 存在c
1
∈(0,1),c
2
∈(1,2),使得g’(c
1
)=g’(1)=g’(c
2
)=0,又存在d
1
∈(c
1
,1),d
2
∈(1,c
2
)使得g"(d
1
)=0(d
2
)=0,再由罗尔定理,存在ξ∈(d
1
,d
2
)[*](0,2),使得g"’(ξ)=0,而g"’(x)=f"’(x)-2,所以"’(ξ)=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/E4V4777K
0
考研数学二
相关试题推荐
已知曲线L的方程。过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
设A,B是n阶矩阵,则下列结论正确的是()
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明(I)中的x0是唯一的。
设f(x)连续可导,F(x)=∫0xf(t)f’(2a一t)dt。证明:F(2a)一2F(a)=f2(a)-f(0)f(2a)。
设f(x)在[a,b]上可导,f’(x)+[f(x)]2-∫axf(t)dt=0,且∫abf(t)dt=0。证明:∫axf(t)dt在(a,b)内恒为零。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
曲线的拐点坐标为___________。
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
若曲线y=ax3+bx2+cx+d在点x=0处有极值y=0,点(1,1)为拐点,求a,b,c,d的值.
已知某商品的需求价格弹性为EQ/EP=-P(lnP+1),且当P=1时,需求量为Q=1.(1)求商品对价格的需求函数;(2)当P→∞时,需求是否趋于稳定?
随机试题
《冯谖客孟尝君》中,冯谖营造“三窟”表现出什么样的性格特征()
形成流痰的根本病因是
开发商自有投资意向开始至项目建设完毕出售或出租并实施全寿命周期的物业管理,大都遵循一个合乎逻辑和开发规律的程序。()
单相接地电流为()及以上时,保护装置动作于跳闸;单相接地电流为()以下时,保护装置可动作于跳闸或信号。
申请合格境外投资者资格,应当具备的条件包括()。
财产所有权包括()。
Thefollowingparagraphsaregiveninawrongorder.ForQuestions41-45,youarerequiredtoreorganizetheseparagraphsintoa
关于页式管理,下面叙述中错误的是( )。
Ofthosethreecompanies,the______givesthebestservice.
ManybooksmakemecrywhenIencounterthemforthefirsttime,althoughfewerthesedaysthanduringmyteens.Butit’sraret
最新回复
(
0
)