首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
admin
2022-04-08
93
问题
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。
(Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域;
(Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
选项
答案
(Ⅰ)证明:由已知可得 φ’(t)=1-cost≥0,φ(0)=0,φ(2π)=2π, 则φ(t)在[0,2π]上单调增加,且值域为[φ(0),φ(2π)]=[0,2π]。 由x=φ(t)=t-sint在[0,2π]上连续可知其在[0,2π]上存在连续的反函数t=φ
-1
(x),且定义域为[0,2π]。所以y(x)=ψ[φ
-1
(x)]在[0,2π]上连续。 (Ⅱ)由旋转体的体积公式(绕y轴旋转),有 V=2π∫
0
2π
xydx=2π∫
0
2π
(t-sint)(1-cost)
2
dt=2π∫
0
2π
t(1-cost)
2
dt, 令t=2π-s,则 V=2π∫
0
2π
(2π-s)(1-coss)
2
ds=4π
2
∫
0
2π
(1-coss)
2
ds-V, [*] 上式中,∫
0
2π
sint(1-cost)
2
dt=∫
-π
π
sint(1-cost)
2
dt=0由周期函数与奇函数的积分性质直接得出。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Qbf4777K
0
考研数学二
相关试题推荐
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设n维行向量α=,矩阵A=I-αTα,B=I+2αTα,其中I为n阶单位矩阵,则AB=【】
设n阶矩阵A与对角矩阵相似,则().
线性方程组则有()
设f(x)=其中g(x)是有界函数,则f(x)在x=0处()
函数f(x)=的间断点及类型是()
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设f(x)=arctanx一(x≥1),则()
当x→0时,f(x)=ex—为x的三阶无穷小,则a,b分别为()
设f(x)有一阶连续导数,f(0)=0,当x→0时,∫0ff(x)f(t)dt与x2为等价无穷小,则f’(0)等于
随机试题
在Word中,利用“绘图”工具栏的“椭圆”工具按钮绘制圆形时需要同时按住
是故谋闭而不兴,盗窃乱贼而不作。闭:
活动性原发型肺结核,用药方案首选
临床化学酶活力测定一般采用
A.“有故无陨,亦无殒也”B.大补气血C.治病与安胎并举D.照顾气血E.下胎益母胎堕难留的治疗原则是
A.《新编药物学》B.《药物治疗学:病理生理学的方法》C.《中华人民共和国药典》D.《药物流行病学》E.《注射药物手册》药师在提供药物信息咨询服务时常需查阅各种资料。除药品说明说之外,还可以查阅多种常用药物信息资料查询输液剂的配伍禁忌
下面的图表是有关机构对某市不同年龄段亚健康人群的调查。请根据图表,分别概括躯体、心理和社会适应等三种亚健康类型发生率与年龄的关系。(1)躯体亚健康:_____________________(2)心理亚健康:_____________________
Communicationisthesendingofinformationornewsfromonepersontoanother.Ifhumanbeingscouldnotcommunicatewithonea
党提出并实施依法治国战略经历了一个曲折的历史过程。党的十八届四中全会明确提出,全面推进依法治国;2015年,党和国家将全面依法治国上升为“四个全面”战略布局的重要一环,开启了中国法治新时代。全面依法治国的总目标是
UNIX的两个主要版本为:AT&T的【 】和BSD4.3。
最新回复
(
0
)