首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
admin
2022-04-08
125
问题
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。
(Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域;
(Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
选项
答案
(Ⅰ)证明:由已知可得 φ’(t)=1-cost≥0,φ(0)=0,φ(2π)=2π, 则φ(t)在[0,2π]上单调增加,且值域为[φ(0),φ(2π)]=[0,2π]。 由x=φ(t)=t-sint在[0,2π]上连续可知其在[0,2π]上存在连续的反函数t=φ
-1
(x),且定义域为[0,2π]。所以y(x)=ψ[φ
-1
(x)]在[0,2π]上连续。 (Ⅱ)由旋转体的体积公式(绕y轴旋转),有 V=2π∫
0
2π
xydx=2π∫
0
2π
(t-sint)(1-cost)
2
dt=2π∫
0
2π
t(1-cost)
2
dt, 令t=2π-s,则 V=2π∫
0
2π
(2π-s)(1-coss)
2
ds=4π
2
∫
0
2π
(1-coss)
2
ds-V, [*] 上式中,∫
0
2π
sint(1-cost)
2
dt=∫
-π
π
sint(1-cost)
2
dt=0由周期函数与奇函数的积分性质直接得出。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Qbf4777K
0
考研数学二
相关试题推荐
下列各项中与的定义相悖的是()
设f(x)=u(x)+v(x),g(x)=u(x)一v(x),并设都不存在,下列论断正确的是
曲线上t=1对应的点处的曲率半径为().
已知方程组有两个不同的解,则λ=()
设f(x)=arctanx一(x≥1),则()
设f(χ),g(χ)是连续函数,当χ→0时,f(χ)与g(χ)是等价无穷小,令F(χ)=∫0χf(χ-t)dt,G(χ)=∫χgχg(χt)dt,则当χ→0时,F(χ)是G(χ)的().
设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,f’y(x,0)=x,求f(x,y).
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(x),并求定义域;(Ⅱ)讨论y=y(x)的可导性与单调性;(Ⅲ)讨论y=y(x)的凹凸性.
设函数f(x)的定义域为(0,+∞)且满足2f(x)+x2f(1/x)=求f(x),并求曲线y=f(x),y=1/2,y=及y轴所围图形绕x轴旋转一周而成的旋转体的体积.
当x→0时,(-1)ln(1+x2)是比xkarctanx高阶的无穷小,而xkarctanx是比(1-)∫0xdt高阶的无穷小,则k的取值范围是()。
随机试题
试述政策分析师职业伦理的基本内容
骨架型缓控释药物的释放速度取决于
翼下颌间隙内的结构主要有
枳术丸的适应证是
伤寒病人最严重的并发症是
女,55岁。垂体腺瘤切除术后1小时。查体:P96次/分,R30次/分,BP110/55mmHg,神志清楚。可采取的体位是()
在物流服务项目的具体实施过程中,为了保证完成物流项目所花费的实际成本不超过预算成本而进行的管理活动是()。
盾构机选择正确与否,涉及能否正常掘进施工,特别是涉及施工安全,必须采取科学的方法,按照可行的程序,经过策划、调查、可行性研究、综合比选评价等步骤,科学合理选定。在可行性研究阶段,涉及开挖面稳定、地层变形、环境保护等方面的分析论证,其中下列不属于环境保护分析
变压器的电流速断保护与()保护配合,以反应变压器绕组及变压器电源侧的引出线套管上的各种故障。
,()
最新回复
(
0
)