首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
admin
2022-04-08
94
问题
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。
(Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域;
(Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
选项
答案
(Ⅰ)证明:由已知可得 φ’(t)=1-cost≥0,φ(0)=0,φ(2π)=2π, 则φ(t)在[0,2π]上单调增加,且值域为[φ(0),φ(2π)]=[0,2π]。 由x=φ(t)=t-sint在[0,2π]上连续可知其在[0,2π]上存在连续的反函数t=φ
-1
(x),且定义域为[0,2π]。所以y(x)=ψ[φ
-1
(x)]在[0,2π]上连续。 (Ⅱ)由旋转体的体积公式(绕y轴旋转),有 V=2π∫
0
2π
xydx=2π∫
0
2π
(t-sint)(1-cost)
2
dt=2π∫
0
2π
t(1-cost)
2
dt, 令t=2π-s,则 V=2π∫
0
2π
(2π-s)(1-coss)
2
ds=4π
2
∫
0
2π
(1-coss)
2
ds-V, [*] 上式中,∫
0
2π
sint(1-cost)
2
dt=∫
-π
π
sint(1-cost)
2
dt=0由周期函数与奇函数的积分性质直接得出。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Qbf4777K
0
考研数学二
相关试题推荐
设y(x)是微分方程y’’+(x-1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则().
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
设函数f(χ)二阶可导,且f′(χ)>0,f〞(χ)>0,△y=f(χ+△χ)-f(χ),其中△χ<0,则().
设X1,X2,…,Xn相互独立同分布,每个分布函数均为F(x),记X=min(X1,…,Xn),Y=max(X1,…,Xn),则(X,Y)的分布函数F(x,y)当y>x时在(x,y)处的值为()
设二阶线性常系数齐次微分方程y"+by’+y=0的每一个解y(x)都在区间(0,+∞)上有界,则实数b的取值范围是()
设z=f(x,y)=则f(x,y)在点(0,0)处
当x→1时,函数的极限()
如图1-3—2,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
设y=y(x)是二阶线性常系数微分方程y’’+Py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
随机试题
economicglobalization
患者,男,45岁。暴饮暴食后出现上腹阵发性疼痛,并伴有腹胀、恶心、呕吐。呕吐物为宿食,停止肛门排气,患者半年前曾做过阑尾切除术。体检:腹胀、软,见肠型,轻度压痛,肠鸣音亢进。该患者出现肠梗阻,最可能的原因为
牛黄的功效是
对脑干损害有定位意义的体征是()
“十二五”时期,要加快发展现代农业,坚持走中国特色农业现代化道路,把保障()作为首要目标,加快转变农业发展方式,提高农业综合生产能力、抗风险能力和市场竞争能力。
地陪应在旅客抵达饭店后尽快办理入店手续,在游客进入房间前,地陪要向其介绍饭店的就餐形式、地点、时间。游客到餐厅的第一餐,地陪应主动引进。()修改:___________________________________
二十世纪二十年代,中国共产党在江西领导的主要革命斗争(运动)有()。
简要分析如何坚持开放发展。
Ifyouhaveeverwonderedhowanelephantsmells,scientistshavetheanswer.ResearchershavediscoveredthatAfricanElephants
Areyouinterested______tennis?
最新回复
(
0
)