首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T 求方程组(1)的一个基础解系;当a为何值时,方程组(1)与(2)有非零公共解?若有,求出所有非零
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T 求方程组(1)的一个基础解系;当a为何值时,方程组(1)与(2)有非零公共解?若有,求出所有非零
admin
2016-05-31
67
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
求方程组(1)的一个基础解系;当a为何值时,方程组(1)与(2)有非零公共解?若有,求出所有非零公共解.
选项
答案
(Ⅰ)对方程组(1)的系数矩阵作初等行变换,有 [*] 由于n-r(A)=4-2=2,基础解系由2个线性无关的解向量所构成,取x
3
,x
4
为自由变量,得 β
1
=(5,-3,1,0)
T
,β
2
=(-3,2,0,1)
T
是方程组(1)的基础解系. (Ⅱ)设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数. 由k
1
β
1
+k
2
β
2
-l
1
α
1
-l
2
α
2
=0,得齐次方程组(3) [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 如果a≠-1,则(3)→[*]那么方程组(3)只有零解,即k
1
=k
2
=l
1
=
2
=0,于是η=0,不合题意. 当a=-1时,方程组(3)系数矩阵变形为[*],解出k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
所以a=-1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,-1,1,1)
T
+l
2
(-1,2,4,7)
T
,l
1
,l
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/JGT4777K
0
考研数学三
相关试题推荐
“人的思维是否具有真理性,这并不是一个理论的问题,而是一个实践的问题。人应该在实践中证明自己思维的真理性,即自己思维的现实性和力量,亦即自己思维的此岸性。”这一论断说明了()。
历史证明,我国的社会主义改造是十分成功的,因为()。
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设A与B均为n,阶矩阵,且A与B合同,则().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
求直线绕z轴旋转所得旋转曲面的方程.
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
设a,b,c是三角形的三条边的长,A、B、C是三边对应的三个角的度量,试用A,a,b,c表示
设实对称矩阵,求可逆矩阵P,使P-1AP为对角形矩阵,并计算行列式丨A-E丨的值.
随机试题
以一把雨伞贯串始终,表现一对夫妇在“文革”中的悲剧命运的小说是()
人民解放军战略决战的三大战役,开始最早的是
出现先兆子宫破裂时应立即
主治医师张某被注销执业注册满1年,现欲重新执业,遂向卫生行政部门递交了相关申请,但未批准。其原因是
病情危重,需绝对卧床休息的病人应给予
综合指标是反映具体时空状态下的社会经济现象的综合数量性质和特征,可以分为()。
不属于设备工程初步设计阶段需要完成的任务是( )。
价值工程的核心是( )。
劳动争议的范围主要有()
[A]manager[B]dictionary[C]light[D]milk[E]teacher[F]cashier[G]policemanYoulookupnewwordsinit.
最新回复
(
0
)