首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
1/2这里Z是X和Y的函数,跟通常不同,这里是分段函数.要考虑X与Z的独立性,先要确定X和Z的边缘分布,X的边缘分布是已知,因而需要确定的是Z的边缘分布,然后要求X和 Z的联合分布. P{Z=1}=P{X+Y为偶数}=P{X=1,Y=1}+P{X
1/2这里Z是X和Y的函数,跟通常不同,这里是分段函数.要考虑X与Z的独立性,先要确定X和Z的边缘分布,X的边缘分布是已知,因而需要确定的是Z的边缘分布,然后要求X和 Z的联合分布. P{Z=1}=P{X+Y为偶数}=P{X=1,Y=1}+P{X
admin
2018-02-23
84
问题
选项
答案
1/2
解析
这里Z是X和Y的函数,跟通常不同,这里是分段函数.要考虑X与Z的独立性,先要确定X和Z的边缘分布,X的边缘分布是已知,因而需要确定的是Z的边缘分布,然后要求X和 Z的联合分布.
P{Z=1}=P{X+Y为偶数}=P{X=1,Y=1}+P{X=0,Y=0}
=P{X=1}P{Y=1}+P{X=0}P{Y=0}
=p
2
+(1-p)
2
=2p
2
-2p+1,
P{Z=0}=1-P{Z=1}=2p-2p
2
,
另一方面,
P{Z=1,X=0}=P{X=0,Y=0}=(1-p)
2
,
P{Z=1,X=1}=P{X=1,Y=0}=p
2
,
P{Z=0,X=0)=P{X=0,Y=1}=(1-p)p,
P{Z=0,X=1}=P{X=1,Y=0}=(1-p)p,
要使X与Z独立,则有P{Z=i,X=j}=P{Z=i}P{Z=j}(i,j=0,1).由
(1-p)
2
=(2p
2
-2p+1)(1-p)
得p=1/2,易验证,当p=1/2时,成立
P{Z=i,X=j}=P{Z=i,X=j}(i,j=0,1).
转载请注明原文地址:https://kaotiyun.com/show/JJk4777K
0
考研数学二
相关试题推荐
A、40B、-40C、80D、-80C
已知函数f(x)=ax3-6ax2+b(a>0),在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.
设生产x单位某产品,总收益R为x的函数:R=R(x)=200x-0.01x2求:生产50单位产品时的总收益、平均收益和边际收益.
作x2+(y-3)2=1的图形,并求出两个y是x的函数的单值支的显函数关系.
设函数f(t)在[0,+∞]上连续,且满足方程试求f(t).
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I1=(f(b)+f(a)),I2=∫abf(x)dx,I3=(b一a)f(b),则I1、I2、I3的大小关系为()
设y=f(x)是区间[0,1]上的任一非负连续函数.又设f(x)在区间(0,1)内可导,且,证明(1)中的x0是唯一的.
随机试题
投资业务的监控制度主要包括哪些内容?
因收益减少造成的经济性贬值的估算公式为【】
Thisnewspaperwillnotknowinglyaccept______forrealestatewhichisinviolationofthelaw.
石斛、覆盆子都可用于治疗的病证是
氟尿嘧啶的适应证不包括
老年人肾脏功能变化较为突出.因为老年肾单位仅为年轻时的
甲企业是增值税一般纳税人,向乙商场销售服装1000件,每件不合税价格为80元。由于乙商场购买量大,甲企业按原价七折优惠销售,乙商场付款后,甲企业为乙商场开具的发票上分别注明了销售额和折扣额,则甲企业此项业务的增值税销项税额是()元。
根据艾里克森的理论,老年期的发展任务是获得()。(2015年)
提出“教育意味着完整的人的发展”,主张应通过教育完美地发展人的能力,提高人的素质,授予人们谋生的本领,培养每个人自立、自尊、自强的意识,这样才可以使人成为人格得到发展的真正独立的人。这位教育家是()
WhyPagodasDon’tFallDownA)Inalandsweptbytyphoonsandshakenbyearthquakes,howhaveJapan’stallestandseeminglyflim
最新回复
(
0
)