首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=( ).
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=( ).
admin
2019-07-28
62
问题
设a
1
,a
2
,a
3
是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a
1
=(1,2,3,4)
T
,a
2
+a
3
=(0,1,2,3)
T
,c表示任意常数,则线性方程组Ax=b的通解x=( ).
选项
A、
B、
C、
D、
答案
C
解析
由题设,Ax=b的系数矩阵A的秩为3,
因此Ax=0的基础解系中只含一个解向量,由于已知Aa
1
=b,Aa
2
=b,Aa
3
=b,
从而A(2a
1
)-A(a
2
+a
3
)=2b-2b=0,则A(2a
1
-a
2
-a
3
)=0,
即2a
1
-a
2
-a
3
=(2,3,4,5)
1
是Ax=0的解,且(2,3,4,5)
1
≠0,
因而可作为Ax=0的基础解系,所以Ax=b的通解为
,所以选(C).
转载请注明原文地址:https://kaotiyun.com/show/JTN4777K
0
考研数学二
相关试题推荐
求微分方程y〞+y′-2y=(2χ+1)eχ-2的通解.
设A=,则(A*)-1=_______.
设z=f(xy),其中函数f可微,则=()
设A是m×n阶矩阵,B是n×m阶矩阵,则().
证明:当x≥0时,f(x)=∫0x(t-t2)sin2ntdf的最大值不超过
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕z轴旋转一周得旋转体体积为[a2f(a)-f(1)].若f(1)=,求:(1)f(x);(2)f(x)的极值.
下列命题:①设均存在,则f(x)在x=x0处必连续;②设fˊ-(x0)与fˊ+(x0)均存在,则f(x)在x=x0处必连续;③设f(x0-)与f(x0+)均存在,则f(x)在x=x0处必连续;④设中至少有一个不存在,则f(x)在x=x0处必不可
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中P=,(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设向量α=(1,0,-1)T,矩阵A=ααT,a为常数,n为正整数,则行列式|aE-An|=_______.
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有四个命题:①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解③(I)的解不是(Ⅱ)的解;④(Ⅱ)的解不是(I)的解。以上命题中正确的是()
随机试题
股骨转子间骨折,患肢畸形呈
设函数y=2sinf(χ),其中f(χ)为可导函数,求y′。
用鼠肝切片免疫荧光法检测抗核抗体主要可见4种荧光模型,下列哪种不是
考虑诊断为此患儿的预后特征为
高血压、动脉粥样硬化老年患者的饮食需
价值工程中,确定产品价值高的标准是()。
风险规避策略制定的原则是“不要将所有鸡蛋放在一个篮子里”。()
传统的电影放映是播放电影拷贝胶片上的画面,银幕上人物几秒钟的静止实际是由放映机播放的数十张胶片上相同的画面形成。该现象包含的哲理是()。
社会主义时期民族问题的实质是
数据字典可通过三种途径实现:人工过程、自动化过程和【】。
最新回复
(
0
)