首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
admin
2018-05-17
52
问题
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=O,得|aE-A|.|bE-A|=0,则|aE-A|=0或者 |bE-A|=0.又由(aE-A)(bE-A)=O,得,r(aE-A)+r(bE-A)≤n. 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n. 所以r(aE-A)+r(bE-A)=n. (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值. 方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/kck4777K
0
考研数学二
相关试题推荐
(2009年试题,一)当x→0时,f(x)=x一sinax与g(x)=x2ln(1一bx)为等价无穷小,则()。
(2008年试题,19)设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(x)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面积在数值上等于其体积的2倍,
(2005年试题,二)设区域D={(x,y)|x2+y2≤4,x>0,y≥0}f(x)为D上的正值连续函数,a,b为常数,则
(1999年试题,十一)设矩阵矩阵X满足A.X=A-1+2X,其中A*是A的伴随矩阵,求矩阵X
利用代换将方程y"cosx-2y’sinx+3ycosx=ex化简,并求出原方程的通解.
微分方程yy’+y’2=0满足初始条件的特解是________.
设有齐次线性方程组Ax=0和Ax=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Ax=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A
设.(1)证明f(x)是以π为周期的周期函数;(2)求f(x)的值域.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=(α1,α2,α3),求P-1AP.
(2000年)某湖泊的水量为V,每年排入湖泊内含污物A的污水量为,流入湖泊内不含A的水量为,流出湖泊的水量为.已知1999年底湖中A的含量为5m0,超过国家规定指标,为了治理污染,从2000年起,限定排入湖泊中含A污水的浓度不超过.问至多需经过多少年,湖泊
随机试题
新生儿先天性胸腺缺陷,可导致
我国教育史上第一个具有资本主义性质的学制是()。
教师上课不再向学生系统讲授教材,而只为学生分别指定参考书,布置作业,由学生自学和独立作业,学生有疑难时才请教师辅导。学生完成一定阶段的学习任务后,向教师汇报学习情况和接受考察。这段话描述的是教学组织形式中的()。
存储器ROM与RAM的主要区别在于
A.浆液性炎B.纤维素性炎C.化脓性炎D.出血性炎E.变质性炎感冒初期鼻黏膜的炎症属于()。
在其他条件不变的情况下,会导致失业率上升的劳动力市场流动方向有()。
听老师读《沁园春.雪》学生头脑中浮现出“千里冰封,万里飘雪”的北国风光是()。
不完全归纳推理就是根据一类事物中的部分对象具有(或不具有)某种属性从而推出该类事物的全部对象都具有(或不具有)某种属性的推理。下列事例中,属于不完全归纳推理的是()。①一个贩毒团伙共有六名成员,通过考察了解到这个团伙的每一个人都有前科,于
(1)在考生文件夹下有一个工程文件sjt3.vbp。程序的功能是:在运行时,如果选中一个单选按钮和一个或两个复选框,并单击“确定”按钮,则对文本框中的文字做相应的设置,如图3-100所示。窗体上的控件已经画出,但没有给出主要程序内容,请编写适当的事件过程,
ImetCameronathishomeinthevillageofNewtonmore,intheScottishHighlands.He’s【C1】______,sowhenwewentoutofhisco
最新回复
(
0
)