已知A为三阶方阵,且满足A2一A一2E=O,行列式0

admin2020-07-02  48

问题 已知A为三阶方阵,且满足A2一A一2E=O,行列式0<|A|<5,则行列式|A+2E|=_____.

选项

答案4

解析 设A为A的任一特征值,对应特征向量为x≠0.由Ax=λx,有(A2一A一2E)x=0,即(λ2一λ一2)x=O,从而有λ2一λ一2=0,即λ=一1或λ=2.又根据|A|=λ1λ2λ3,Ai为A的特征值(i=l,2,3),及0<|A|<5,知必有λ12=一1,λ3=2.进而由Axiixi,有(A+2E)xi=(λi+2)λi,xi属于λi的特征向量,可见A+2E的三个特征值为μii+2,即μ12=1,μ3=4,故行列式|A+2E|=u1u2u3=|.|4=4
转载请注明原文地址:https://kaotiyun.com/show/JUx4777K
0

随机试题
最新回复(0)