首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
admin
2017-08-31
50
问题
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξ
i
∈(a,b)(i=1,2,…,n),使得
=1.
选项
答案
令h=[*],因为f(x)在[a,b]上连续且单调增加,且f(a)=a<b=f(b), 所以f(a)=a<a+h<…<a+(n-1)h<b=f(b),由端点介值定理和函数单调性. 存在a<c
1
<c
2
<…<
n-1
<b,使得f(c
1
)=a+h,f(c
2
)=a+2h,…,f(c
n-1
)=a+(n一1)h,再由微分中值定理,得 f(c
1
)一f(a)=f
’
(ξ
1
)(c
1
一a),ξ
1
∈(a,c
1
), f(c
2
)一f(c
1
)=f
’
(ξ
2
)(c
2
一c
1
),ξ
1
∈(c
1
,c
2
),… f(b)一f(c
n-1
)=f
’
(ξ
n
)(b一c
n-1
),ξ
n
∈(c
n-1
,b), 从而有[*]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/JWr4777K
0
考研数学一
相关试题推荐
[*]
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
A、 B、 C、 D、 C
当x=一2时,级数条件收敛,则级数的收敛半径为().
计算曲面积分,其中∑是曲面2x2+2y2+z2=4的外侧.
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足若f(x,y)在D内没有零点,则f(x,y)在D上().
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,-2,4,0)T,又B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解.
设有曲面S:x2+Y2=a2(0≤z≤a),则=_______.
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.(Ⅰ)求X的分布律;(Ⅱ)若当X=k时,随机变量Y在[0,k]上服从均匀分布,k=1,2,3,4,求P{Y≤2}.
设F(x)=∫0x(x2一t2)f’(t)dt,其中f’(x)在x=0处连续,且当x→0时,F’(x)~x2,则f’(0)=________.
随机试题
西方最早的经典医德文献是反映孙思邈的医德思想和境界的是
下列关于认识错误的说法,不正确的是()
考核基本建设投资支出效益时,应采用的方法是()。
根据对外贸易法律制度的规定,下列说法中不正确的是()。
下列说法错误的是()
根据《幼儿园工作规程》,幼儿园园长应具备()。
某一年中有53个星期二,并且当年的元旦不是星期二,那么下一年的最后一天是()。
下列叙述中正确的是
Amongtheraftofbooks,articles,jokes,romanticcomedies,self-helpguidesandotherwritingsdiscussingmarriage,somefamil
复式记账制度()现金预算()负债()标准成本()
最新回复
(
0
)