首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足若f(x,y)在D内没有零点,则f(x,y)在D上( ).
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足若f(x,y)在D内没有零点,则f(x,y)在D上( ).
admin
2014-11-26
67
问题
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足
若f(x,y)在D内没有零点,则f(x,y)在D上( ).
选项
A、最大值和最小值只能在边界上取到
B、最大值和最小值只能在区域内部取到
C、有最小值无最大值
D、有最大值无最小值
答案
A
解析
因为f(x,y)在D上连续,所以f(x,y)在D上一定取到最大值与最小值,不妨设f(x,y)在D上的最大值M在D内的点(x
0
,y
0
)处取到,即f(x
0
,y
0
)=M≠0,此时
矛盾,即f(x,y)在D上的最大值M不可能在D内取到,同理f(x,y)在D上的最小值m不可能在D内取到,选A
转载请注明原文地址:https://kaotiyun.com/show/ne54777K
0
考研数学一
相关试题推荐
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由;
设A是3阶矩阵,b=[9,18,-18]T,方程Ax=b有通解k1[-2,1,0]T+k2[2,0,1]T+[1,2,-2]T,其中k1,k2是任意常数,求A及A100.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设证明当k>2时,Ak0的充分必要条件为A2=0.
设函数f(x,y)连续,则∫12dy∫1yf(x,y)dx+∫12dy∫y4—yf(x,y)dx=().
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ex一xz=0所确定,求
设f(x,y)=,则在点(0,1)处的两个偏导数f’x(0,1)和f’y(0,1)的情况为().
设函数y=y(x)满足微分方程y’’一3y’+2y=2ex,其图形在点(0,1)处的切线与曲线g(x)=x2一x+1在该点处的切线重合,求函数y的解析表达式.
求一条凹曲线,已知其上任意一点处的曲率k=,其中α为该曲线在相应点处的切线的倾斜角,且该曲线在点(1,1)处的切线为水平方向.
求条件概率P{X≤1|Y≤1}.
随机试题
利用压力表测量稳定压力时,测压值不能超过测量上限的()。
美国医学物理学家学会(AAPM)规定加速器E射线的稳定性每月监测的允许精度为
呕吐的病因不包括
用ELISA双抗体夹心法检测抗原A时,固相载体的包被物是
(2010)“百柱殿”是下列哪个建筑群中的大殿建筑?
与长期证券投资相比,短期证券投资的特点有()。
甲公司向乙银行申请贷款,还款日期为2020年12月31日。丙公司为该债务提供保证担保,约定保证方式为连带责任保证,但未约定保证期间。后甲公司申请展期,与乙银行就还款期限作了变更,还款期限延至2021年8月1日,但未征得丙公司的书面同意。展期到期,甲公司无力
()属于传统人事管理的内容。
1999年中央财政社会保障支出为( )。参加基本养老保险的在职职工比离退休人员多( )。
KB(千字节)是度量存储器容量大小的常用单位之一,1KB等于()。
最新回复
(
0
)