首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η1,η2,η3满足η1+η2= (2,0,-2,4)T,η1+η3=(3,1,0,5)T,则Ax=b的通解为_________________.
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η1,η2,η3满足η1+η2= (2,0,-2,4)T,η1+η3=(3,1,0,5)T,则Ax=b的通解为_________________.
admin
2021-02-25
48
问题
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η
1
,η
2
,η
3
满足η
1
+η
2
=
(2,0,-2,4)
T
,η
1
+η
3
=(3,1,0,5)
T
,则Ax=b的通解为_________________.
选项
答案
k(1,1,2,1)
T
+(1,0,-1,2)
T
,其中k为任意常数
解析
本题考查线性方程组的解的性质和非齐次线性方程组的通解的结构.
因为r(A)=3,所对应的齐次线性方程组Ax=0的解空间的维数为4-3=1,故它的任一非零解都可作为其基础解系.由于η
1
+η
3
-(η
1
+η
2
)=η
3
-η
2
=(1,1,2,1)
T
可作为Ax=0的基础解系.
又
是Ax=b的—个解,所以Ax=b的通解为k(1,1,2,1)
T
+(1,0,-1,2)
T
,其中k为任意常数
转载请注明原文地址:https://kaotiyun.com/show/JY84777K
0
考研数学二
相关试题推荐
已知α1,α2都是3阶矩阵A的特征向量.特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
[*]
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。求L的方程;
确定常数a,c,使得,其中c为非零常数.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’’(2)=_______。
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为().
随机试题
浅埋暗挖法施工的方针有()。
Theinjectionthatthegirlhadbeengivenwasbeginningtowork.Herhead【C1】______heavy,andshewasverysleepy.Oncesheope
A、休息,高热量高蛋白饮食,保肝治疗B、休息,高热量限蛋白饮食,输入支链氨基酸C、休息,控制输液量,纠正电解质紊乱,限制蛋白D、休息,禁食,积极补充血容量并采取止血措施E、休息,低盐饮食,限制入水量,补充蛋白质,给予利尿剂治疗肝硬化代偿期(
环境中某些化学物质被吸收后不断积聚、浓缩。这种现象称为
输卵管绝育术的作用是
甲公司如果起诉,其应当向哪个(些)地方的法院起诉?为什么?假设仲裁庭做出了裁决,甲公司申请强制执行,乙公司申请撤销仲裁裁决,那么法院应当如何处理?
实施监理的某公路工程在施工过程中发生如下事件:事件1:某跨线桥工程基坑开挖后发现有城市供水管道横跨基坑,须将供水管道改线并对地基进行处理,为此发包人以书面形式通知承包人停工10天,并同意合同工期顺延10天,为确保继续施工,要求工人、施工机械等不要
下列选项中,( )诉讼时效期间为1年。下列关于上述场景的描述中,正确的是( )。
设有定义:charp[]={’1’,’2’,’3’},*q=p;以下不能计算出一个char型数据所占字节数的表达式是
Lookatthenotesbelow.Youwillhearamancallingforinformationaboutthefinancialsituationofacompany.
最新回复
(
0
)