首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(a,+∞)内可导,求证: (Ⅰ)若χ0∈(a,+∞),f′(χ)≥α>0(χ>χ0),则=+∞; (Ⅱ)若f′(χ)=A>0,则f(χ)=+∞.
设f(χ)在(a,+∞)内可导,求证: (Ⅰ)若χ0∈(a,+∞),f′(χ)≥α>0(χ>χ0),则=+∞; (Ⅱ)若f′(χ)=A>0,则f(χ)=+∞.
admin
2019-08-12
40
问题
设f(χ)在(a,+∞)内可导,求证:
(Ⅰ)若χ
0
∈(a,+∞),f′(χ)≥α>0(χ>χ
0
),则
=+∞;
(Ⅱ)若
f′(χ)=A>0,则
f(χ)=+∞.
选项
答案
(Ⅰ)[*]χ>χ
0
,由拉格朗日中值定理,[*]∈(χ
0
,χ), f(χ)=f(χ
0
)+f′(ξ)(χ-χ
0
)>f(χ
0
)+α(χ-χ
0
), 又因[*] (Ⅱ)因[*]>0,由极限的不等式性质[*]χ
0
∈(a,+∞),当χ>χ
0
时f′(χ)>[*]>0,由题(Ⅰ)[*]f(χ)=+∞.
解析
转载请注明原文地址:https://kaotiyun.com/show/JeN4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2证明
求极限
求下列定积分:(Ⅰ)I=∫0πsin2xarctanexdx.
求
已知n阶方阵A满足矩阵方程A2一3A一2E=O.证明:A可逆,并求出其逆矩阵A-1.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=_____________.
微分方程y"一7y’=(x一1)2的待定系数法确定的特解形式(系数的值不必求出)是__________.
随机试题
__________是指一群人建立和保持联系,以便相互沟通的一种形式。
在DNA的双螺旋模型中
下述各种细胞中,再生能力最强的是
男性患者,65岁,因慢性支气管炎、肺部感染、呼吸衰竭入院。护理体检:气促,不能平卧,痰黏呈黄色,不易咳出。测血气分析氧分压5.3kPa,血二氧化碳分压10.8kPa。
A机电安装工程公司承包了一座中外合资乳品厂的机电安装工程,主要设备及工艺管道全部进口,对于部分工艺管线的材质,A公司没有接触过。其中的喷粉塔高40m,最上部的塔节重20t,需要整体吊装。项目部根据吊装方案,决定采用汽车吊。外方专家要求:工艺管线的焊工要经
与普通合伙制企业相比,下列各项中,属于公司制企业特点的是()。
下面左图示意我国某区域的水系分布。某学校研究性学习小组对左图中的M地进行实地考察,并查阅了相关资料,发现近30年来M地生态环境明显改善。右图示意M地的等高线分布,下表示意M地的土地利用结构变化。读图表回答问题。若M区域及其周围地区过度发展种植业,可能
国家举办各种学校,普及初等义务教育,发展(),并且发展学前教育。
()是人民警察的象征与标志。
一位新教师把大量时间花在维护自己与同事、领导间的关系上,说明其处在成长中的()。
最新回复
(
0
)