首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xjxj. (Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式; (Ⅱ)判断
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xjxj. (Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式; (Ⅱ)判断
admin
2016-10-26
52
问题
设A=(a
ij
)是秩为n的n阶实对称矩阵,A
ij
是|A|中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(x
1
,x
2
,…,x
n
)=
x
j
x
j
.
(Ⅰ)记X=(x
1
,x
2
,…,x
n
)
T
,试写出二次型f(x
1
,x
2
,…,x
n
)的矩阵形式;
(Ⅱ)判断二次型g(X)=X
T
AX与F(X)的规范形是否相同,并说明理由.
选项
答案
(Ⅰ)因为r(A)=n,故A是可逆的实对称矩阵,于是(A
-1
)
T
=(A
T
)
-1
=A
-1
, 即A
-1
是实对称矩阵,那么[*]是对称的,因而A
*
是实对称矩阵,可见A
ij
=A
ji
(i,j=1,2,…,n),于是 [*] 因此,二次型f的矩阵表示为X
T
A
-1
X,其二次型矩阵为A
-1
. (Ⅱ)因为A,A
-1
均是可逆的实对称矩阵,且(A
-1
)
T
AA
-1
=(A
-1
)
T
E=(A
T
)
-1
=A
-1
. 所以A与A
-1
合同.于是g(X)与f(X)有相同的规范形.
解析
按定义,若F(X)=X
T
BX,其中B是实对称矩阵,则X
T
BX就是二次型f的矩阵表示,而两个二次型的规范形是否一样关键是看正负惯性指数是否一致.
转载请注明原文地址:https://kaotiyun.com/show/Jhu4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 B
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
下列各对函数中,两函数相同的是[].
用集合运算律证明:
求下列函数的导数:
曲线y=(x+4sinx)/(5x-2cosx)的水平渐近线方程为_____.
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
计算,Ω是球面x2+y2+z2=4与抛物面x2+y2=3z所围形成.
随机试题
催化剂的组成中,活性组分就是含量最大的成分。
A.attheageof97B.featuredinTimemagazine’sselectionin1998C.bysellingskincareproductsD.incosmeticsE.introdu
女,30岁,肛门周围胀痛,伴畏寒、发热3天。检查:肝门周围皮肤发红,压痛明显。最可能的诊断是
项目计划书中的主要项目活动都应进行目标人群满意度的
下列哪项不是胃液的作用
A.鳞癌B.腺癌C.小细胞未分化癌D.大细胞未分化癌E.细支气管肺泡癌肺癌恶性程度最高的类型为
在新中国的金融市场中,资本市场的发展晚于货币市场的发展。()
下列农村金融机构中,不属于2007年批准新设立的机构是()。
零售商主导的连锁组织的优势是()。
Forthispart,youareallowed30minutestowriteashortessayonthetopicofChildrenObesity.Youshouldwriteatleast150
最新回复
(
0
)