首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3经正交变换x=Py化成.f=y22+2y32,P是三阶正交矩阵,试求常数a、β.
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3经正交变换x=Py化成.f=y22+2y32,P是三阶正交矩阵,试求常数a、β.
admin
2013-08-30
71
问题
设二次型f=x
1
2
+x
2
2
+x
3
2
+2ax
1
x
2
+2βx
2
x
3
+2x
1
x
3
经正交变换x=P
y
化成.f=y
2
2
+2y
3
2
,P是三阶正交矩阵,试求常数a、β.
选项
答案
变换前后二次型的矩阵分别为[*] 二次型可以写成f=x
T
Ax和f=y
T
By,由于P
T
AP=B,P为正交矩阵,故p
-1
AP=B, 因此|λE-A|=|λE-B|,即[*] λ
3
-3λ
3
+(2-a
2
-β
2
)λ+(a-β)
2
=λ
3
-3λ
2
+2λ,比较系数得a=β=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/JD54777K
0
考研数学一
相关试题推荐
(2011年试题,三)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T,不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示.求α的值;
设函数f(x,y)具有二阶连续偏导数,且满足f(0,0)=1,f’x(0,0)=2,f’y(0,y)=-3以及f”xx(x,y)=y,f”xy(x,y)=x+y,求f(x,y)的表达式.
设函数f(x)在(0,+∞)内具有二阶连续导数,且与f(1)=f’(1)=1.求函数f(r)的表达式.
设常数1<a<e1/e,x1=a,xn=axn-1(n=2,3,…),证明当n→∞时,数列{xn}极限存在.
设向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ等价?当a为何值时,向量组(Ⅰ
设线性方程组证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;
求下列函数的导数:;
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3.证明向量组β1,β2,β3也是R3的一个基;
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
求曲线y=x2-2x,y=0,x=1,x=3所围成的平面图形的面积S,并求该平面图形绕y轴旋转一周所得旋转体的体积V
随机试题
Nowshemustworktwiceashardtocatchupwithothers.
红细胞沉降率加速主要是由于()(2002年)
下面四句话中表达不正确的是()。
某采购中心为某中学采购一批教学用实验设备,鉴于所购实验设备较为简易,且规格、型号、标准一致,国内产品质量过关、货源充足,价格稳定等特点,决定采用询价方式进行采购。他们询价的步骤是:第一步,从本中心工作人员中抽调6人组成三个询价小组;第二步,将一定范围内的1
房地产转让是指房地产权利人通过买卖、赠予或者其他合法方式将其房地产转移给他人的行为。其中的其他合法方式主要包括()。
某业主与W了程公司依据FIDIC条款格式,订立了某机电安装工程的施工合同。合同规定:采用单价合同,因设计变更而发生的工程量变化,按实调整;同时视具体的变,动情况,业主与承包商商谈变更后的单价。合同工期为18天,工期每提前1天奖励2000元,每拖后1天罚款4
工程建设法律关系的构成要素包括( )。
2006年底,全国广告经营额达1573亿元,比上年增长156.7亿元,增长率达11.1%,增幅比上年下降了0.9个百分点。2006年底,全国共有广告经营单位143129户,比上年增加17735户,增长14.1%;广告从业人员1040099人,比上年增加99
简述从欧共体成立到20世纪七八十年代.西欧同美国的关系。
第一部用马克思主义观点系统阐述教育理论的著作是
最新回复
(
0
)