首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I)β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T与向量组(Ⅱ)α1=(1,2,一3)T,α2=(3,0,1)T,α3=(a,b,一7)T有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
已知向量组(I)β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T与向量组(Ⅱ)α1=(1,2,一3)T,α2=(3,0,1)T,α3=(a,b,一7)T有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
admin
2016-01-11
59
问题
已知向量组(I)β
1
=(0,1,一1)
T
,β
2
=(a,2,1)
T
,β
3
=(b,1,0)
T
与向量组(Ⅱ)α
1
=(1,2,一3)
T
,α
2
=(3,0,1)
T
,α
3
=(a,b,一7)
T
有相同的秩,且β
3
可由α
1
,α
2
,α
3
线性表示,求a,b的值.
选项
答案
显然α
1
,α
2
线性无关,且3α
1
+2α
2
=α
3
,所以向量组α
1
,α
2
,α
3
的秩r(α
1
,α
2
,α
3
)=2,且α
1
,α
2
是向量组α
1
,α
2
,α
3
的一个极大线性无关组,于是r(β
1
,β
2
,β
3
)=2,从而|β
1
,β
2
,β
3
|=0,即[*]又β
3
可由α
1
,α
2
,α
3
线性表示,所以β
3
可由其极大线性无关组α
1
,α
2
线性表示,从而β
3
,α
1
,α
2
线性相关,于是[*]解得a=15,b=5.
解析
本题考查向量线性表示和向量组秩的概念.要求考生掌握“向量组线性相关
向量组中至少有一个向量能由其余的向量线性表示”,“向量组线性相关
由它们排成的行列式等于零”,“一个向量能由一组向量线性表示,则该向量就能由其极大线性无关组线性表示”.
转载请注明原文地址:https://kaotiyun.com/show/Ji34777K
0
考研数学二
相关试题推荐
设A是3阶矩阵,α1,α2,α3是3维列向量且α1≠0,Aα1=kα1,Aα2=α1+kα2,Aα3=α2十kα3,则()
设曲线Y=a与y=㏑(x>0)在点(x0,y0)处有公切线.求两曲线与x轴所围图形绕x轴旋转一周所得旋转体的体积V.
当x→0时,f(x)与x2是等价无穷小,其中f(x)连续,f(t)dt与xn是同阶无穷小,则n=()
设Z=X+Y,其中随机变量x与Y相互独立,且分布函数分别为X与Z是否相关?说明理由.
设某商品的需求函数为Q=100-5P,其中Q,P分别表示需求量和价格,若商品需求弹性的绝对值大于1,则商品价格P的取值范围是________.
设,其中a,b均为常数,且a>b,b≠0,则()
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求正交矩阵Q,使得Q-1AQ=A.
已知f(x)在(-∞,+∞)内可导,且,求a的值.
若线性方程组有解,则常数α1,α2,α3,α4应满足条件_____.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
随机试题
以下属于公理性原则的是:
某甲是国务院证券管理委员会的_工作人员,违反有关上市申请的审批规定,擅自批准不符合上市资格的公司通过申请,这个疏忽导致使许多股民遭受重大损失,甲没有从中谋取任何个人利益。甲的行为构成:()
我国招投标应当遵循的原则是()。
某企业拟开发一种新产品,有四种设计方案可供选择,见下表。根据以上资料,回答下列问题:根据等概率原则,每种状态的概率为1/3,则该企业应该选择方案()。
()可以引用和编辑文本、图像、声音、动画和视频等多种媒体素材。
观察下面这幅漫画。请你对此谈谈看法。
A、 B、 C、 D、 A原数列可化为:分母为差后等比数列,故下一项为36。分子为三级等差数列,故下一项为8+4+18=30。故空缺项应为。
以下哪部作品属于60年代的“黑色幽默”文学,用夸张、超现实的手法将欢乐与痛苦、可笑与可怖、柔情与残酷、荒唐古怪与一本正经糅合在一起?()
Britainhaslawstomakesurethatwomenhavethesameopportunitiesasmenineducation,jobsandtraining.Butit’sstillunus
KeepOurSeasCleanA)Bytheyear2050itisestimatedthattheworld’spopulationcouldhaveincreasedtoaround12billio
最新回复
(
0
)