首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I)β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T与向量组(Ⅱ)α1=(1,2,一3)T,α2=(3,0,1)T,α3=(a,b,一7)T有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
已知向量组(I)β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T与向量组(Ⅱ)α1=(1,2,一3)T,α2=(3,0,1)T,α3=(a,b,一7)T有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
admin
2016-01-11
79
问题
已知向量组(I)β
1
=(0,1,一1)
T
,β
2
=(a,2,1)
T
,β
3
=(b,1,0)
T
与向量组(Ⅱ)α
1
=(1,2,一3)
T
,α
2
=(3,0,1)
T
,α
3
=(a,b,一7)
T
有相同的秩,且β
3
可由α
1
,α
2
,α
3
线性表示,求a,b的值.
选项
答案
显然α
1
,α
2
线性无关,且3α
1
+2α
2
=α
3
,所以向量组α
1
,α
2
,α
3
的秩r(α
1
,α
2
,α
3
)=2,且α
1
,α
2
是向量组α
1
,α
2
,α
3
的一个极大线性无关组,于是r(β
1
,β
2
,β
3
)=2,从而|β
1
,β
2
,β
3
|=0,即[*]又β
3
可由α
1
,α
2
,α
3
线性表示,所以β
3
可由其极大线性无关组α
1
,α
2
线性表示,从而β
3
,α
1
,α
2
线性相关,于是[*]解得a=15,b=5.
解析
本题考查向量线性表示和向量组秩的概念.要求考生掌握“向量组线性相关
向量组中至少有一个向量能由其余的向量线性表示”,“向量组线性相关
由它们排成的行列式等于零”,“一个向量能由一组向量线性表示,则该向量就能由其极大线性无关组线性表示”.
转载请注明原文地址:https://kaotiyun.com/show/Ji34777K
0
考研数学二
相关试题推荐
设A=,b=,方程组Ax=b有无穷多解.(Ⅰ)求a的值及Ax=b的通解;(Ⅱ)求一个正交变换x=Qy,化二次型f(x1,x2,x3)=xTAx为标准形.(Ⅲ)求一个可逆线性变换将(Ⅱ)中的f(x1,x2,x3)化为规范形.
设当x→0时,x-(a+bcosx)sinx与x3是等价无穷小,则()
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
设函数y(x)是微分方程y’(x)+1/x·y(x)=1/x2(x>0)的解,且y(1)=0.求y(x);
设A是3阶方阵,λ1=1,λ2=-2,λ3=-1为A的特征值,对应的特征向量依次为a1,a2,a3,P=(3a2,2a3,-a1),则P-1(A*+E)P=()
设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,a1+a2=(2,0,-2,4)T,a1+a3=(3,1,0,5)T,则Ax=b的通解为________.
当x→0时,ln(1+x)-(ax+bx2)与2x2是等价无穷小,则()
设A3×3是秩为1的实对称矩阵,λ1=2是A的一个特征值,其对应的特征向量为a1=(-1,1,1)T,则方程组Ax=0的基础解系为()
若线性方程组有解,则常数α1,α2,α3,α4应满足条件_____.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵P-1AP属于特征值λ的特征向量是().
随机试题
完成瘢痕修复的物质基础是
塑料基托的厚度约
JIT生产方式最显著的特点是()。
合同当事人订立合同,有书面形式、口头形式及电子邮件等其他形式。()
采购是指通过商品交换和物流手段从资源市场取得资源的过程,它一般包含以下一些基本含义()。
上课时,柯老师正在组织小朋友们讨论。然然先找毛毛碰头玩,又去抱乐乐的腿,脸上还带着得意的笑容。柯老师恰当的做法是()。
处罚是治安管理的基本手段,教育是治安管理的必备手段。( )
已知(X,Y)在以点(0,0),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,对(X,Y)作4次独立重复观察,观察值X+Y不超过1出现的次数为Z,则EZ2=________.
【F1】Skilledworkersinscience,technology,engineeringandmatharenowmoreindemandthaneverasnationscompeteforpolepo
A、Inarestaurant.B、Inasnack-bar.C、Inateashop.D、Inahotel.D该题为判断题。根据女士的第一句话“CanIhavebreakfastinmyroom?”以及其后的对话可知
最新回复
(
0
)