首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I)β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T与向量组(Ⅱ)α1=(1,2,一3)T,α2=(3,0,1)T,α3=(a,b,一7)T有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
已知向量组(I)β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T与向量组(Ⅱ)α1=(1,2,一3)T,α2=(3,0,1)T,α3=(a,b,一7)T有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
admin
2016-01-11
52
问题
已知向量组(I)β
1
=(0,1,一1)
T
,β
2
=(a,2,1)
T
,β
3
=(b,1,0)
T
与向量组(Ⅱ)α
1
=(1,2,一3)
T
,α
2
=(3,0,1)
T
,α
3
=(a,b,一7)
T
有相同的秩,且β
3
可由α
1
,α
2
,α
3
线性表示,求a,b的值.
选项
答案
显然α
1
,α
2
线性无关,且3α
1
+2α
2
=α
3
,所以向量组α
1
,α
2
,α
3
的秩r(α
1
,α
2
,α
3
)=2,且α
1
,α
2
是向量组α
1
,α
2
,α
3
的一个极大线性无关组,于是r(β
1
,β
2
,β
3
)=2,从而|β
1
,β
2
,β
3
|=0,即[*]又β
3
可由α
1
,α
2
,α
3
线性表示,所以β
3
可由其极大线性无关组α
1
,α
2
线性表示,从而β
3
,α
1
,α
2
线性相关,于是[*]解得a=15,b=5.
解析
本题考查向量线性表示和向量组秩的概念.要求考生掌握“向量组线性相关
向量组中至少有一个向量能由其余的向量线性表示”,“向量组线性相关
由它们排成的行列式等于零”,“一个向量能由一组向量线性表示,则该向量就能由其极大线性无关组线性表示”.
转载请注明原文地址:https://kaotiyun.com/show/Ji34777K
0
考研数学二
相关试题推荐
设曲线Y=a与y=㏑(x>0)在点(x0,y0)处有公切线.求两曲线与x轴所围图形绕x轴旋转一周所得旋转体的体积V.
设随机变量X的概率密度为,其中a,b为常数.记Φ(x)为N(0,1)的分布函数.若在x=1处f(x)取得最大值,则P{1-<X<1+}=()
设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,a1+a2=(2,0,-2,4)T,a1+a3=(3,1,0,5)T,则Ax=b的通解为________.
当x→0时,ln(1+x)-(ax+bx2)与2x2是等价无穷小,则()
设向量a=(1,1,-1)T是的一个特征向量.证明:A的任一特征向量都能由a线性表示.
当x→(1/2)+时,a(x)=π-3arccosx与β(x)=a(x-1/2)b是等价无穷小,则()
已知f(x)在(-∞,+∞)内可导,且,求a的值.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵P-1AP属于特征值λ的特征向量是().
设ξ为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为().
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
随机试题
为什么要将调整国际经济关系的国际法规范和国内法规范归为一类?
公文处理工作应当迅速、及时,反对拖拉、积压和迂缓就是
货币的本质是
A、1/4B、1/3C、1/2D、2倍E、4倍药品标签使用注册商标含文字的,其字体以单字面积计不得大于通用名称所用字体的
CR使用的IP中的核心物质是
患者女性,62岁,有糖尿病5年,心绞痛病史2年。因突发胸闷、出汗、胸部紧缩感紧急住院。血压110/70mmHg,做心电图显示:胸前导联的ST段压低0.2mV,T波倒置,无病理性Q波。查心肌损伤标记物升高。应诊断为
会计法律制度由()来保障实施。
货币制度最基本的内容是()。
2008年以来,面对国内遭遇历史罕见的低温雨雪冰冻灾害、国际次贷危机不断蔓延和加深的严峻复杂形势,通过采取措施,有效应对,国民经济保持了平稳较快发展。初步核算,一季度国内生产总值61491亿元,按可比价格计算,同比增长10.6%,比上年同期回落1
Howsoonyourperformancewillberatedmayinfluencehowwellyoudo,accordingtoanewstudypublishedinthejournalPsychol
最新回复
(
0
)