首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立的寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效. 求:(Ⅰ)一只器件在时间T0未失效的概率; (Ⅱ)λ的最大似然估
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立的寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效. 求:(Ⅰ)一只器件在时间T0未失效的概率; (Ⅱ)λ的最大似然估
admin
2019-01-24
29
问题
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立的寿命试验,试验进行到预订时间T
0
结束,此时有k(0<k<n)只器件失效.
求:(Ⅰ)一只器件在时间T
0
未失效的概率;
(Ⅱ)λ的最大似然估计量.
选项
答案
(Ⅰ)记T的分布函数为F(t),则 [*] 一只器件在t=0时投入试验,则在时间T
0
以前失效的概率为P{T≤T
0
}=F(T
0
)=1
-eλT
0
,故在时间T
0
未失效的概率为 P{T>T
0
}=1-F(T
0
)=e
-λT
0
. (Ⅱ)考虑事件A={试验直至时间T
0
为止,有k只器件失效,n-k只未失效}的概率.由于各只器件的试验是相互独立的,因此事件A的概率为 L(λ)=C
k
n
(1-e
-λT
0
)
k
(e
-λT
0
)
n-k
, 这就是所求的似然函数.取对数得 ln L(λ)=lnC
k
n
+kln(1-e
-λT
0
)+(n-k)(-λT
0
). 令[*] 则ne
-λT
0
=n-k,解得λ的最大似然估计量为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JvM4777K
0
考研数学一
相关试题推荐
已知的一个特征向量.(1)试确定参数a、b及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
设总体X的密度函数为(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量;(2)求.
10件产品中4件为次品,6件为正品,现抽取2件产品.逐个抽取,求第二件为正品的概率.
判断级数的敛散性,若收敛是绝对收敛还是条件收敛.
某种元件使用寿命X~N(μ,102),按照客户要求该元件使用寿命不能低于1000h,现从该批产品中随机抽取25件,其平均使用寿命为=995,在显著性水平α=0.05下确定该批产品是否合格?
设,求矩阵A可对角化的概率.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为________.
设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi-(i=1,2,…,n).求:D(Yi);
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
随机试题
Themanshowedtheboy______heshouldplaythepiano.
异烟肼:利福平:
关于易化扩散的叙述,错误的是
髌骨软化症的疼痛特点,除有膝前区不适和疼痛外,还有
下列关于髓石的X线片显示,错误的是
电气照明导线连接方式,除铰接外,还包括()。
如果实际销售增长率明显低于可持续增长率的话,长期销售收入增长将产生借款的需求。()
为什么人们在享受自己创造的财富的过程中,会时时受到大自然的种种惩罚?因为在土壤侵蚀、沙漠化、滥伐森林、越来越多的物种灭绝、环境污染等所导致的生态系统的退化中,已经进步到能登月球、造核武器的人类,还没有真正揭开人与生物圈之间的秘密。该段中“秘密”一词
设f(x)=
一般说来,VFP6.0系统具有结构化程序设计的______种基本结构。
最新回复
(
0
)