首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立的寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效. 求:(Ⅰ)一只器件在时间T0未失效的概率; (Ⅱ)λ的最大似然估
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立的寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效. 求:(Ⅰ)一只器件在时间T0未失效的概率; (Ⅱ)λ的最大似然估
admin
2019-01-24
19
问题
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立的寿命试验,试验进行到预订时间T
0
结束,此时有k(0<k<n)只器件失效.
求:(Ⅰ)一只器件在时间T
0
未失效的概率;
(Ⅱ)λ的最大似然估计量.
选项
答案
(Ⅰ)记T的分布函数为F(t),则 [*] 一只器件在t=0时投入试验,则在时间T
0
以前失效的概率为P{T≤T
0
}=F(T
0
)=1
-eλT
0
,故在时间T
0
未失效的概率为 P{T>T
0
}=1-F(T
0
)=e
-λT
0
. (Ⅱ)考虑事件A={试验直至时间T
0
为止,有k只器件失效,n-k只未失效}的概率.由于各只器件的试验是相互独立的,因此事件A的概率为 L(λ)=C
k
n
(1-e
-λT
0
)
k
(e
-λT
0
)
n-k
, 这就是所求的似然函数.取对数得 ln L(λ)=lnC
k
n
+kln(1-e
-λT
0
)+(n-k)(-λT
0
). 令[*] 则ne
-λT
0
=n-k,解得λ的最大似然估计量为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JvM4777K
0
考研数学一
相关试题推荐
设向量α1=(1,一1,1)T,α2=(1,k,一1)T,α3=(k,1,2)T,β=(4,k2,一4)T.问k取何值时,β可由α1,α2,α3线性表示?并求出此线性表示式.
有一大批产品,其验收方案如下,先做第一次检验,从中任取10件,经检验无次品则接收这批产品,次品数大于2,则拒收;否则做第二次检验.其做法是从中再任取5件,仅当5件无次品时接收这批产品,若产品的次品率为10%,求:这批产品需进行第二次检验且能被接收的概率
随机变量X可能取的值为-1,0,1.且知EX=0.1,EX2=0.9,求X的分布列.
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ一1)f(ξ)=0.
设(X,Y)的联合概率密度为f(x,y)=.求:(1)(X,Y)的边缘密度函数;(2)Z=2X—Y的密度函数.
设随机变量X的分布函数为F(z),则下列函数中可作为某随机变量的分布函数的是().
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为________.
交换二次积分的积分次序:=_________.
(1998年)设正项数列{an}单调减少,且发散,试问级数是否收敛?并说明理由。
随机试题
我们建议尽快召开一次会议。
需要制备蒙片的检查方法是
计算机系统安全与保护指计算机系统的全部资源具有()、完备性和可用性。
根据《水利水电工程等级划分及洪水标准》的规定,某水库总库容为5×107m3,该水库的工程等别为()。
基金管理人在办结登记手续之日起()内仍未备案首只私募基金产品的,基金业协会将注销该基金管理人的登记。
资本寻求其生存和发展的各种必要条件的集中表现为项目对()。
如今,学区房受到热捧,很多家长争相购买,很多人认为不良中介恶意炒作使得房价不断上涨,出现学区房一房难求的局面。对此,你怎么看?
一桶水含桶共重20千克,第一次倒掉水量的,第二次倒掉剩余水量的,第三次倒掉剩余水量的,第四次倒掉剩余水量的,最终水和桶共重5.6千克,问桶的重量为多少千克?()
ReadthistextaboutHumanResourceManagement.Inmostofthelines34—45thereisoneextraword.Itiseithergrammaticallyi
"Theywereamusedbytheclumsypanda’smovement"is______,becauseitisnotclearwhetherthepandaorthemovementis"clumsy
最新回复
(
0
)