首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。 (Ⅰ)求函数y=f(x)的解析式; (Ⅱ)a取何值时,此图形绕x轴旋转一周而
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。 (Ⅰ)求函数y=f(x)的解析式; (Ⅱ)a取何值时,此图形绕x轴旋转一周而
admin
2019-08-11
54
问题
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+
ax
2
。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)a取何值时,此图形绕x轴旋转一周而成的旋转体体积最小?
选项
答案
(Ⅰ)将[*],这是一阶线性微分方程,由一阶线性微分方程的通解公式得 [*] 由y=f(x)与x=1,y=0围成的平面图形的面积为2可知, [*] 注意到在(0,1)内需f(x)>0成立,故还需确定a的取值范围。 [*] ①当a=0时,f(x)=4x,满足题意; ②当a>0时,函数f(x)开口向上,只需对称轴[*]即可,即0<a≤4; ③当a<0时,函数f(x)开口向下,对称轴[*],只需f(1)≥0,即-8≤a<0; 综上所述,f(x)=[*]ax
2
+(4-a)x且-8≤a≤4。 (Ⅱ)y=f(x)绕x轴旋转一周而成的旋转体体积为 V(a)=π∫
0
1
f
2
(x)dx [*] 由[*]得a=-5∈[-8,4],而实际问题总是存在最值,所以当a=-5时,旋转体的体积最小。
解析
转载请注明原文地址:https://kaotiyun.com/show/K8N4777K
0
考研数学二
相关试题推荐
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______
已知正、负惯性指数均为1的二次型f=xTAx通过合同变换x=Py化为f=yTBy,其中B=,则a=_________。
已知A,B均是2×4矩阵,其中Ax=0有基础解系α1=(1,1,2,1)T,α2=(0,-3,1,0)T;Bx=0有基础解系β1=(1,3,0,2)T,β1=(1,2,-1,a)T.若Ax=0和Bx=0有非零公共解,求参数α的值及公共解.
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1+ξ2+ξ3.证明:β不是A的特征向量;
设0<x<1,证明:
设α(1,2,3,4)T,β(3,-2,-1,1)T,A=αβT.问A能否相似于对角矩阵?说明理由.
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ+η=k(1,2,-3)T+(2,-1,1)T,其中k是任意常数.证明:方程组(α1,α2)x=β有唯一解,并求该解;
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=一1,求极限
随机试题
A.贝壳B.耳后腺及皮肤腺的干燥分泌物C.干燥整体D.除去内脏的干燥体E.病理产物蛤蚧的药用部位是()。
______learningconditions______theyprovidedforuswereexcellent.
麻醉药品、第一类精神药品需要带出医疗机构外使用时,患者或者其代办人不需出示的材料是
A.卫生行政部门处罚B.工商行政管理部门处罚C.经济综合主管部门处罚D.药品监督管理部门处罚《中华人民共和国药品管理法》规定医疗机构的负责人、药品采购人员、医师等有关人员收受药品生产企业、药品经营企业或者其代理人给予的财物或者其他利益的,由
依据《安全生产许可证条例》的规定,安全生产许可证有效期为()年,不设年检。
《中国土地法大纲》
Accordingtothewriter,theoriginalnotionontheproductivitygainsofthe1990sturnsouttobeThepurposeoftheauthori
已知成绩关系如下图所示。执行SQL语句:SELECTCOUNT(DISTINCT学号)FROM成绩WHERE分数>60查询结果中包含的元组数目是
HavingKidsMakesYouHappy?A)WhenIwasgrowingup,ourformerneighbors,whomwe’llcalltheSloans,weretheonlycoupleon
A、Tocutpetroleumoutput.B、Tofightagainstimperialism.C、Tohelphisgoodfriend.D、Topromotetheinternationalexchanges.
最新回复
(
0
)