设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。 (Ⅰ)求函数y=f(x)的解析式; (Ⅱ)a取何值时,此图形绕x轴旋转一周而

admin2019-08-11  43

问题 设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。
    (Ⅰ)求函数y=f(x)的解析式;
    (Ⅱ)a取何值时,此图形绕x轴旋转一周而成的旋转体体积最小?

选项

答案(Ⅰ)将[*],这是一阶线性微分方程,由一阶线性微分方程的通解公式得 [*] 由y=f(x)与x=1,y=0围成的平面图形的面积为2可知, [*] 注意到在(0,1)内需f(x)>0成立,故还需确定a的取值范围。 [*] ①当a=0时,f(x)=4x,满足题意; ②当a>0时,函数f(x)开口向上,只需对称轴[*]即可,即0<a≤4; ③当a<0时,函数f(x)开口向下,对称轴[*],只需f(1)≥0,即-8≤a<0; 综上所述,f(x)=[*]ax2+(4-a)x且-8≤a≤4。 (Ⅱ)y=f(x)绕x轴旋转一周而成的旋转体体积为 V(a)=π∫01f2(x)dx [*] 由[*]得a=-5∈[-8,4],而实际问题总是存在最值,所以当a=-5时,旋转体的体积最小。

解析
转载请注明原文地址:https://kaotiyun.com/show/K8N4777K
0

最新回复(0)