首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。 (Ⅰ)求函数y=f(x)的解析式; (Ⅱ)a取何值时,此图形绕x轴旋转一周而
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。 (Ⅰ)求函数y=f(x)的解析式; (Ⅱ)a取何值时,此图形绕x轴旋转一周而
admin
2019-08-11
47
问题
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+
ax
2
。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)a取何值时,此图形绕x轴旋转一周而成的旋转体体积最小?
选项
答案
(Ⅰ)将[*],这是一阶线性微分方程,由一阶线性微分方程的通解公式得 [*] 由y=f(x)与x=1,y=0围成的平面图形的面积为2可知, [*] 注意到在(0,1)内需f(x)>0成立,故还需确定a的取值范围。 [*] ①当a=0时,f(x)=4x,满足题意; ②当a>0时,函数f(x)开口向上,只需对称轴[*]即可,即0<a≤4; ③当a<0时,函数f(x)开口向下,对称轴[*],只需f(1)≥0,即-8≤a<0; 综上所述,f(x)=[*]ax
2
+(4-a)x且-8≤a≤4。 (Ⅱ)y=f(x)绕x轴旋转一周而成的旋转体体积为 V(a)=π∫
0
1
f
2
(x)dx [*] 由[*]得a=-5∈[-8,4],而实际问题总是存在最值,所以当a=-5时,旋转体的体积最小。
解析
转载请注明原文地址:https://kaotiyun.com/show/K8N4777K
0
考研数学二
相关试题推荐
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______
设函数f(μ,ν)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=________。
设A=(α1,α2,α3,β),B=(α2,α3,α1,γ),|A|=a,|B|=b,则|A+B|=__________。
已知A=,矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,则X=________.
已知A,B均是2×4矩阵,其中Ax=0有基础解系α1=(1,1,2,1)T,α2=(0,-3,1,0)T;Bx=0有基础解系β1=(1,3,0,2)T,β1=(1,2,-1,a)T.求矩阵A;
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设f(x)在闭区间[a,b]上连续,常数k>0.并设φ(x)=∫xbf(t)dt-k∫axf(t)dt,证明:若增设条件f(x)≠0,则(I)中的ξ是唯一的,并且必定有ξ∈(a,b).
设f(x)在闭区间[a,b]上连续,常数k>0.并设φ(x)=∫xbf(t)dt-k∫axf(t)dt,证明:存在ξ∈[a,b]使φ(ξ)=0;
设,问a,b,c为何值时,向量组α1,α2,α3与β1,β2,β3是等价向量组?向量组等价时,求α1由β1,β2,β3线性表出的表出式及β1由α1,α2,α3线性表出的表出式.
设平面图形D由摆线x=a(t-sint),y=a(1-cost),0≤t≤2兀,a>0的第一拱与x轴围成,求该图形D对y轴的面积矩My.
随机试题
需要层次理论是人本主义心理学家()首次提出的。
A黏附功能B聚集功能C分泌功能D凝血功能E血块收缩功能GPⅡb/Ⅲa复合物与血小板哪种功能有关
桩锤的打击能量通过替打传递给桩,使桩逐渐下沉,并有保护桩顶、调节高程与固定桩的作用。()
三级感温探测器适合的房间高度为()。
项目管理的目标是()、进度目标和质量目标。
下列内容中,不属于记账凭证审核内容的是( )。
菲利普斯曲线说明()。
下列关于保险标的的说法不正确的是()。
在营养宣教的开展中可以现身说法。
麦克里兰把人的高层次需要归纳为对_____________、_____________和_____________的需要。
最新回复
(
0
)