首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f′(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f′″(ξ)=2.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f′(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f′″(ξ)=2.
admin
2022-08-19
56
问题
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f′(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f′″(ξ)=2.
选项
答案
方法一 先作一个函数P(x)=ax
3
+bx
2
+cx+d,使得 P(0)=f(0)=1,P′(1)=f′(1)=0,P(2)=f(2)=5/3,P(1)=f(1). 则P(x)=x
3
/3+[1/3-f(1)]x
2
+[2f(1)-5/3]x+1, 令g(x)=f(x)=P(x),则g(x)在[0,2]上三阶可导,且g(0)=g(1)=g(2)=0,所以存在c
1
∈(0,1),c
2
∈(1,2),使得g′(1)=g′(1)=g′(c
2
)=0,又存在d
1
∈(c
1
,1),d
2
∈(1,c
2
)使得g″(d
1
)=g″(d
2
)=0,再由罗尔定理,存在ξ∈(d
1
,d
1
)[*](0,2),使得g″(ξ)=0,而g″(x)=f″(x)-2,所以f″(ξ)=2. 方法二 由泰勒公式,得 1=f(0)=f(1)+f″(1)/2-f′″(ξ
1
)/6,ξ
1
∈(0,1), 5/3=f(2)=f(1)+f″(1)/2-f′″(ξ
2
)/6,ξ
2
∈(1,2), 两式相减,得2/3=[f′″(ξ
1
)+f′″(ξ
2
)]/6,而f′″(x)∈C[0,2],所以存在ξ∈(0,2),使得f′″(ξ)=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/KVR4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,证明:∫abf(x)dx=(b-a)∫01f[a+(b-a)x]dx.
设有幂级数(1)求该幂级数的收敛域;(2)证明:此幂级数满足微分方程y’’-y=-1;(3)求此幂级数的和函数.
设级数cn收敛,又an≤bn≤cn(n=1,2,…).证明:级数bn收敛.
设an为发散的正项级数,令S1=a1+a2+…+an(n=1,2,…).证明:收敛.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f’’(x)|≤M,证明:|f’(x)|≤
随机试题
超声探头最重要的部件是:
张某打算自己投资设立一企业从事商贸业务。下列哪一选项是错误的?
对于划拨用地开发建设项目,开发商在取得《建设用地规划许可证》后,方可向政府土地主管部门申请用地,经()审批后,由土地主管部门划拨土地。
注册会计师在对X公司期后事项进行审计时,遇到下列情况,请代为作出正确的判断。针对发生在财务报表报出日后的期后调整事项,注册会计师已经知悉,同时管理层已经修改了财务报表,则下列注册会计师的行动不恰当的是()。
清水断崖位于中国台湾省东部海岸,依山傍海,崖岸壁立,为台湾八大名胜之一。读图,回答问题。清水断崖海岸地质作用强烈,其内、外力作用的主要表现形式分别是()。
已知正方体的棱长为1,则这个正方体的外接球的直径为_______________.
根据有关线索,运用一定策略,在意志努力下完成映象复现的有意回忆是()
结合材料回答问题:材料11971年10月25日晚,纽约东河河畔。联合国总部会议大厅里响起雷鸣般的掌声。第26届联合国大会以压倒多数通过第2758号决议,决定恢复中华人民共和国在联合国的合法席位。曾在中国工作过的坦桑尼亚常驻联合国代表萨利姆高兴得
()不属于电子商务基础设施。
Manytheoriesconcerningthecausesofjuveniledelinquencyfocuseitherontheindividualoronsocietyasthemajorcontributi
最新回复
(
0
)