首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 设y(x)是区间(0,)内的可导函数,且y(1)=0,点P是曲线L:y=y(x)上的任意一点,L在点P处的切线与Y轴相交于点(0,YP),法线与x轴相交于点(XP,0),若Xp=Yp,求L上点的坐标(x,y)满足的方程。
[2017年] 设y(x)是区间(0,)内的可导函数,且y(1)=0,点P是曲线L:y=y(x)上的任意一点,L在点P处的切线与Y轴相交于点(0,YP),法线与x轴相交于点(XP,0),若Xp=Yp,求L上点的坐标(x,y)满足的方程。
admin
2019-05-10
41
问题
[2017年] 设y(x)是区间(0,
)内的可导函数,且y(1)=0,点P是曲线L:y=y(x)上的任意一点,L在点P处的切线与Y轴相交于点(0,Y
P
),法线与x轴相交于点(X
P
,0),若X
p
=Y
p
,求L上点的坐标(x,y)满足的方程。
选项
答案
结合导数的应用和微分方程的求解方法,首先使用切线和法线的性质列出微分方程,再求解微分方程. 设L在(x,y)处的切线方程为Y—y(x)=y′(x)(X—x),所以Y
P
=y(x)一y′(x)x;对应的法线方程为Y—y(x)=一[*](X—x),所以X
P
=x+y(x)y′(x). 由X
p
=Y
p
得y(x)一xy′(x)=x+y(x)y′(x),即 [*] 这是一个齐次方程,可令u=[*],则u+x[*] 整理得x[*],分离变量得,[*]. 积分得[*]ln(1+u
2
)+arctanu=一lnx+c. 又由y(1)=0得c=0,故L上点的坐标(x,y)满足的方程为 [*]+arctan[*]=一lnx,x∈(0,[*]).
解析
转载请注明原文地址:https://kaotiyun.com/show/KVV4777K
0
考研数学二
相关试题推荐
当χ→0时,下列无穷小中,哪个是比其他三个更高阶的无穷小().
设f(χ)=求f(χ)的极值.
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.(1)求A的全部特征值;(2)当k为何值时,A+kE为正定矩阵?
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
求微分方程χ2y′+χy=y2满足初始条件y(1)=1的特解.
设f(χ)连续可导,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk为同阶无穷小,求k.
设A=有三个线性无关的特征向量,则a=_______.
曲线y=x2+x(x<0)上曲率为的点的坐标是_________.
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2.(1)试求D1绕x轴旋转而成的旋转体的体积V1;D2绕y轴旋转而成的旋转体的体积V2;(2)问
随机试题
男性,28岁,自诉突然心慌、胸闷,听诊心率200次/min,心律齐,血压正常。若用心电示波监护该患者时,荧光屏上突然出现完全不规则的大波浪状曲线,且QRS波与T波消失。你考虑下列哪项处理措施不妥
背景材料:某高速公路L合同段(K55+600~K56+600)主要为路基土石方工程,本地区岩层构成为泥岩、砂岩互层,抗压强度20MPa左右,地表土覆盖层较薄。填方路段填料由挖方路段调运,填料中71%为石方,施工过程部分事件摘要如下:事件1:在填筑路堤时,
根据《行政诉讼法》规定,相对人对具体行政行为不服直接向人民法院提起诉讼,应当在知道作出具体行政行为之日起()内提起,法律另有规定的除外。
国家是阶级矛盾调和的产物。
某数的50%比它的2/3少1,这个数是( )
下列关于综合布线系统的描述中,错误的是()。
有如下程序:Form1.ClsForr=35To85Step25Circle(300,240),rNextr单击窗体后,窗体上显示的是()。
Withoutthefrictionbetweenourfeetandtheground,wemaynotbeabletowalk.
A、assuredhisfamilymembersthathewassafeB、askedtheBritishgovernmenttosavehislifeC、criticizetheBritishgovernment
PlayIsaSeriousBusinessA)Playingisaseriousbusiness.Childrenengrossedinamake-believeworld,foxcubsplay-fightingo
最新回复
(
0
)