首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α1,α2,…,αn-1线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设n维列向量α1,α2,…,αn-1线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
admin
2016-10-20
74
问题
设n维列向量α
1
,α
2
,…,α
n-1
线性无关,且与非零向量β
1
,β
2
都正交.证明β
1
,β
2
线性相关,α
1
,α
2
,…,α
n-1
,β
1
线性无关.
选项
答案
用α
1
,α
2
,…,α
n-1
构造(n-1)×n矩阵:A=[*]因为β
1
与每个α
i
都正交,有α
i
T
β
1
=0,进而Aβ
1
=0,即β
1
是齐次方程组Ax=0的非零解.同理β
2
也是Ax=0的解. 又因r(a)=r(α
1
,α
2
,…,α
n-1
)=n-1,齐次方程组Ax=0的基础解系仅由n-r(A)=1个解向量构成,从而β
1
,β
2
线性相关.若 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+lβ
1
=0, (*) 那么,用β
1
作内积,有k
1
(β
1
,α
1
)+k
2
(β
1
,α
2
)+…+k
n-1
(β
1
,α
n-1
)+l(β
1
,β
1
)=0. 因为(β
1
,α
i
)=0 (i:1,2,…,n-1),及||β
1
||≠0, 有l(β
1
,β
1
)=l||β
1
||
2
=0, 得到l=0.将l=0代入(*)式,有k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
=0. 由于α
1
,α
2
,…,α
n-1
线性无关,得k
1
=k
2
=…=k
n-1
=0,所以(*)中组合系数必全是零,即α
1
,α
2
,…,α
n-1
,β
1
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/KeT4777K
0
考研数学三
相关试题推荐
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
求下列曲线所围成的图形的面积:
试求正数λ的值,使得曲面xyz=λ与曲面在某一点相切.
设必为θ2的().
计算下列各题:y=,求y’,其中a>b>0.
随机试题
资本化率是将房地产的净收益转换成价值的比率。由于资本化率的微小变化会导致价值的很大变化,资本化率如果选取不当,计算结果会出现很大的差异,从而即使净收益的估算很准确,计算结果仍然不可信任。()
关于地租与土地产品的关系,安德森认为()。
1.背景某项目施工过程中,项目经理部为了降低项目成本将工程划分为:基础工程、主体结构工程、安装工程、装饰装修工程,并对其功能进行评分,根据项目合同和施工图纸,得出预算成本,详见下表。根据项目所属的企业要求该项目经理部在项目管理过程中成本降低率为6%,所以
下列关于混合筹资的说法中,不正确的是()。
用列表法编制的弹性预算,主要特点有()。
我国《刑事诉讼法》不仅明确规定了有权提起上诉的主体,而且明确规定了有权提起抗诉的主体。根据现行法律的规定,有权按照第二审程序提起抗诉的是()。
确认某排污行为是否合法的根据是()。
古文明一般形成于中度大河沿岸的内陆地区,适宜的气候、肥沃的土壤条件较适宜于人类活动。而随着科学技术的发展,这些要素逐渐被弱化,人类活动已经从内陆转向沿海,出现了现代沿海向内陆的经济梯度。对比古文明与现代沿海文明的环境差异,其中最核心的是交通和可接近性对相关
今天是阿美20岁生日,同学朋友一起为她开了一个热闹的生日派对。大家都为阿美准备了精美的生日礼物,他们一起唱歌、跳舞、说笑,最后一起吃生日蛋糕。阿美非常开心。她看起来兴高彩烈,欢乐的笑声时时响起。请分别用一下两个经典的情绪理论来分析解释阿美的快乐心情:坎
按通道性质,短时记忆的编码方式分为()
最新回复
(
0
)