首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α1,α2,…,αn-1线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设n维列向量α1,α2,…,αn-1线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
admin
2016-10-20
80
问题
设n维列向量α
1
,α
2
,…,α
n-1
线性无关,且与非零向量β
1
,β
2
都正交.证明β
1
,β
2
线性相关,α
1
,α
2
,…,α
n-1
,β
1
线性无关.
选项
答案
用α
1
,α
2
,…,α
n-1
构造(n-1)×n矩阵:A=[*]因为β
1
与每个α
i
都正交,有α
i
T
β
1
=0,进而Aβ
1
=0,即β
1
是齐次方程组Ax=0的非零解.同理β
2
也是Ax=0的解. 又因r(a)=r(α
1
,α
2
,…,α
n-1
)=n-1,齐次方程组Ax=0的基础解系仅由n-r(A)=1个解向量构成,从而β
1
,β
2
线性相关.若 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+lβ
1
=0, (*) 那么,用β
1
作内积,有k
1
(β
1
,α
1
)+k
2
(β
1
,α
2
)+…+k
n-1
(β
1
,α
n-1
)+l(β
1
,β
1
)=0. 因为(β
1
,α
i
)=0 (i:1,2,…,n-1),及||β
1
||≠0, 有l(β
1
,β
1
)=l||β
1
||
2
=0, 得到l=0.将l=0代入(*)式,有k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
=0. 由于α
1
,α
2
,…,α
n-1
线性无关,得k
1
=k
2
=…=k
n-1
=0,所以(*)中组合系数必全是零,即α
1
,α
2
,…,α
n-1
,β
1
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/KeT4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设A与B均为n,阶矩阵,且A与B合同,则().
某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
求下列曲线在指定点处的曲率及曲率半径:(1)椭圆2x2+y2=1在点(0,1)处;(2)抛物线y=x2-4x+3在顶点处;(3)悬链线y=acoshx/a(a>0),在点(x。,y。)处;(4)摆线在对应t=π/2的点处;(5)阿基米德螺线ρ=a
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-2x12-10x22,在广告费用不限的情况下,求最优
随机试题
小儿时期肺动脉瓣区第二音比主动脉瓣区第二音(),即P2()A2。
A、Marketingconsultancy.B、Professionalaccountancy.C、Luxuryhotelmanagement.D、Businessconferenceorganization.A
女性,35岁。反复出现胸、腹腔积液,轻度乏力、消瘦,无发热,既往无特殊。PPD(+++),血沉35mm/h。按结核性多浆膜腔积液治疗无效,胸腹水未控制。妇科检查及B超提示右侧卵巢可见纤维瘤。最有可能的诊断是
A一级医疗事故B二级医疗事故C三级医疗事故D四级医疗事故E医疗过失造成患者重度残疾属于
下列选项中,属于替牙期间的暂时性错是
治疗肺炎支原体肺炎的首选药物是
甲与乙订立了一份买卖合同,价款100万元,甲要求乙向其支付15万元定金,同时约定,任何一方违约,应支付对方10%的违约金。因甲不能履行合同,引起违约,乙向甲要求返还的数额最多为()。
A、7,21B、10,18C、19,5D、11,17D
皮亚杰认为人类的认知发展是由外向内转化的内化过程。
VisualBasic采用了()编程机制。
最新回复
(
0
)