首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α1,α2,…,αn-1线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设n维列向量α1,α2,…,αn-1线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
admin
2016-10-20
66
问题
设n维列向量α
1
,α
2
,…,α
n-1
线性无关,且与非零向量β
1
,β
2
都正交.证明β
1
,β
2
线性相关,α
1
,α
2
,…,α
n-1
,β
1
线性无关.
选项
答案
用α
1
,α
2
,…,α
n-1
构造(n-1)×n矩阵:A=[*]因为β
1
与每个α
i
都正交,有α
i
T
β
1
=0,进而Aβ
1
=0,即β
1
是齐次方程组Ax=0的非零解.同理β
2
也是Ax=0的解. 又因r(a)=r(α
1
,α
2
,…,α
n-1
)=n-1,齐次方程组Ax=0的基础解系仅由n-r(A)=1个解向量构成,从而β
1
,β
2
线性相关.若 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+lβ
1
=0, (*) 那么,用β
1
作内积,有k
1
(β
1
,α
1
)+k
2
(β
1
,α
2
)+…+k
n-1
(β
1
,α
n-1
)+l(β
1
,β
1
)=0. 因为(β
1
,α
i
)=0 (i:1,2,…,n-1),及||β
1
||≠0, 有l(β
1
,β
1
)=l||β
1
||
2
=0, 得到l=0.将l=0代入(*)式,有k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
=0. 由于α
1
,α
2
,…,α
n-1
线性无关,得k
1
=k
2
=…=k
n-1
=0,所以(*)中组合系数必全是零,即α
1
,α
2
,…,α
n-1
,β
1
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/KeT4777K
0
考研数学三
相关试题推荐
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设A是n×m矩阵,B是m×n矩阵,其中n
一个家庭中有两个小孩.(1)已知其中有一个是女孩,求另一个也是女孩的概率;(2)已知第一胎是女孩,求第二胎也是女孩的概率.
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
设有一物质曲线Γ,在点(x,y,z)处它的线密度为μ(x,y,z),用第一类曲线积分分别表示:(1)该物质曲线关于x轴与y轴的转动惯量;(2)该物质曲线对位于线外点Mo(xo,yo,zo)处的单位质点的引力.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
∫01xarctanxdx=__________.
计算下列各题:方程y-yey=1确定y=y(x),求y".
随机试题
患者,男,60岁,诊断为房性心律失常,医生给予胺碘酮治疗。近日,因患胃溃疡开始用西咪替丁治疗,出现窦性心动过缓症状。关于胺碘酮与其他药物的相互作用,说法错误的是
下列对吡罗昔康的叙述中不正确的是
根据《公务员法》的规定,下列哪些选项属于公务员交流方式?
隧道内存放汽油、柴油、煤油、变压器油、雷管、炸药等易燃易爆物品时,应制订相应的安全措施。()
既无收益又很少发生交易的房地产的估价特别适用()估价法。
某公司进口一批货物的货价为FOB旧金山900美元,已知运费为100美元,外汇牌价的买卖中间价为USD100=750元人民币,该批货物的关税完税价格是()。
假设某只股票连续十年保持10%的年收益率,那么,这只股票的几何平均收益率()
银行的流动性需求具有刚性,这表现为一旦银行不能满足客户提取存款的需要,就有可能导致挤兑.最终引起银行破产。()
中央银行货币政策工具中,再贴现政策的优点不包括()。
社区建设的核心是居民自治,以社区居民为依托,让广大社区居民积极参与社区建设。()
最新回复
(
0
)