首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
admin
2018-08-12
103
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
(1)求矩阵A的特征值;
(2)判断矩阵A可否对角化.
选项
答案
(1)因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0,由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
-α
2
)=-(α
1
-α
2
),A(α
2
-α
3
)=-(α
2
-α
3
),得A 的另一个特征值为λ
2
=-1. 因为α
1
,α
2
,α
3
线性无关,所以α
1
-α
2
与α
2
-α
3
也线性无关,所以λ
2
=-1为矩阵A的二重特征值,即A的特征值为2,-1,-1. (2)因为α
1
-α
2
,α
2
-α
3
为属于二重特征值-1的两个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Khj4777K
0
考研数学二
相关试题推荐
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
求方程组的通解.
设A为m×n阶矩阵,C为n阶矩阵,B=AC,且r(A)=r,r(B)=r1,则().
设A是三阶矩阵,B是四阶矩阵,且|A|=2,|B|=6,则为().
求函数u=的梯度方向的方向导数.
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方程组的通解.
A、 B、 C、 D、 CS(x)可看作是f(x)作偶延拓后再作周期为2的周期延拓后的函数的傅里叶级数之和.由于S(x)是以2为周期的偶函数,所以由傅里叶级数的收敛定理知
随机试题
注射粉针使用前须加溶媒溶解,即加()
患者,男,因上前牙有白色斑要求治疗。检查:左上1及右上1唇面有白垩斑,探光滑、硬,其余未见明显异常。该患牙诊断为
行业的()是指行业内企业的数量、规模和市场份额的分布。
根据《票据法》的规定,支票的提示付款期限为()。
某钢铁厂生产一种特种钢材,由于原材料价格上涨,今年这种特种钢材的成本比去年上升了20%。为了推销该种钢材,钢铁厂仍然以去年的价格出售,这种钢材每吨的盈利下降40%,不过销售量比去年增加了80%,那么今年生产该种钢材的总盈利比去年增加了多少?(
我们每个人都应该有这样的生活态度:如果你赋予工作意义,不论工作轻重,你都会感到快乐,自我设定的成绩不论高低,都会使人对工作产生乐趣。如果你不喜欢做的话,任何简单的事都会变得困难、无趣,当你叫喊着这个工作很累人时,即使你不卖力气,你也会感到筋疲力尽,反之就大
求
OSI参考模型中最上层的是______。
以下程序的输出结果是【】。 #include<iostream.h> voidmain() { inta=0; a+=(a=8); cout<<a; }
--Yourcitylooksbeautiful!--Yes.Lotsoftreesandgrass______lastyear.
最新回复
(
0
)