首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X的概率密度 (Ⅰ)求分布函数F(x); (Ⅱ)若令Y=F(X),求Y的分布函数FY(y).
已知随机变量X的概率密度 (Ⅰ)求分布函数F(x); (Ⅱ)若令Y=F(X),求Y的分布函数FY(y).
admin
2018-06-15
27
问题
已知随机变量X的概率密度
(Ⅰ)求分布函数F(x);
(Ⅱ)若令Y=F(X),求Y的分布函数F
Y
(y).
选项
答案
直接应用F(x)=P{X≤x},F
Y
(y)=P{F(X)≤y}求解. (Ⅰ)F(x)=P{X≤x}=
-∞
x
f(t)dt [*] (Ⅱ)令Y=F(X),则由0≤F(x)≤1及F(x)为戈的单调不减连续函数知(如图2.1),当y<0时F
Y
(y)=0;当y≥1时,F
Y
(y):1;当0≤y<1/2时, F
Y
(y)=P{F(X)≤y}=P{F(X)≤0}+P{0<F(X)≤y} =P{0<X
2
/2≤y} [*] 当1/2≤y<1时, F
Y
(y)=P{F(X)≤y} =P{F(X)≤0}+P{0<F(X)≤1/2}+P{1/2<F(X)≤y} =0+P{0<X<1}+P{1<X≤F
-1
(y)} =∫
0
1
xdx+[*]f(x)dx [*] 综上得F
Y
(y) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Kxg4777K
0
考研数学一
相关试题推荐
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
求下列曲面所围成的立体的体积:z=1-x2-y2,z=0;
设函数f(x,y)连续,且f(x,y)=x+∫∫Dyf(u,v)dudv,其中D由,x=1,y=2围成,求f(x,y).
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
若DX=0.004,利用切比雪夫不等式估计概率P{|X-EX|<0.2}.
设函数f(u)在(0,+∞)内具有二阶导数,且若f(1)=0,f(1)=1,求函数f(u)的表达式.
设函数P(x,y),Q(x,y)在单连通区域D内有一阶连续偏导数,L为D内曲线,则曲线积分∫LPdx+Qdy与路径无关的充要条件为()
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.求函数φ(y)的表达式.
设f(x)=x-sinxcosxcos2x,g(x)=则当x→0时f(x)是g(x)的
设y=f()且f’(x)=arctanx2,则dy/dx|x=0=_______.
随机试题
纵隔淋巴结的ATS图分区法。
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,k为正整数,求证:存在一点ξ∈(0,1)使得ξf’(ξ)+kf(ξ)=f’(ξ).
喉软骨软化症
A.麻仁胶囊B.通便灵C.当归龙荟丸D.尿毒清颗粒E.通便宁片具有润肠通便功效的中成药是()
患者,女性,37岁。近来易怒,出汗多,体重明显减轻,心率118/分,基础代谢率+45%。甲状腺听诊可闻及杂音。诊断为“原发性甲亢”。该患者原发性甲亢的临床特点是
属于水杨酸类的药物是()。
对蓄热自热着火控制应当结合的下列特点中不正确的是()。
根据争议性质的不同,劳动争议可划分为()
下列不属于科研行业职业道德规范的内容是()
请从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
最新回复
(
0
)