首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0.求证:如果f(x)在(0,1)内不恒等于零,则必存在ξ∈(0,1),使得f(ξ)f’(ξ)>0.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0.求证:如果f(x)在(0,1)内不恒等于零,则必存在ξ∈(0,1),使得f(ξ)f’(ξ)>0.
admin
2016-10-20
24
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0.求证:如果f(x)在(0,1)内不恒等于零,则必存在ξ∈(0,1),使得f(ξ)f’(ξ)>0.
选项
答案
因f(ξ)f’(ξ)>0[*]是否在(0,1]上有取正值的点. 因f(x)在(0,1)上不恒等于零,从而必存在x
0
∈(0,1)使f(x
0
)≠0,即[*].设F(x)=[*],则F(x)在[0,x
0
]上连续,在(0,x
0
]内可导,且F(0)=0,F(x
0
)>0.由拉格朗日中值定理知 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/L0T4777K
0
考研数学三
相关试题推荐
0
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
计算空间曲积分为螺线x=cosθ,y=sinθ,z=θ,由A(1,0,0)到B(1,0,2π)的一段.
设a。+a1/2+…+an/n+1=0.证明:多项式f(x)=a。+a1x+…+anxn在(0,1)内至少有一个零点.
随机试题
胃的容受性舒张是通过下列哪一途径实现的?
原发性肝癌发生最多的年龄段是
腹泻病人饮食不宜
甲公司于2015年1月1日以银行存款3300万元购入乙公司30%股权,并能够对其财务经营政策施加重大影响,取得投资日乙公司可辨认净资产公允价值为9000万元,相关资产、负债公允价值均等于账面价值。2015年和2016年乙公司实现净利润均为2000万元。20
以下符合耕地占用税减免税规定的有()。
关于PC机软件的描述中,以下哪个说法是错误的?
Let’sstopreadingandhaveateabreak,______?
AlthoughIrishliteraturecontinuedtoflourishafterthesixteenthcentury,a(i)______traditionis(ii)______inthevisuala
A、Avisittoaprison.B、Theinfluenceofhisfather.C、Atalkwithsomemiserableslaves.D、HisexperienceinthewarbetweenF
Today,mostcountriesintheworldhavecanals.Manycountrieshavebuiltcanalsnearthecoast,andparalleltothecoast.Even
最新回复
(
0
)