首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a﹤b=f(b). 证明:存在εi∈(a,b)(i=1,2,...,n),使得.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a﹤b=f(b). 证明:存在εi∈(a,b)(i=1,2,...,n),使得.
admin
2019-09-23
91
问题
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a﹤b=f(b).
证明:存在ε
i
∈(a,b)(i=1,2,...,n),使得
.
选项
答案
令[*],因为f(x)在[a,b]上连续且单调的增加,且f(a)=a<b=f(b),所以f(a)=a<a+h<...<a+(n-1)h<b=f(b),由端点介值定理和函数单调性,存在a<c
1
<c
2
<...<c
n-1
<b,使得 f(c
1
)=a+h,f(c
2
)=a+2h,...,f(c
n-1
)=a+(n-1)h,再由微分中值定理,得 f(c
1
)-f(a)=f’(ε
1
)(c
1
-a),ε
1
∈(a,c
1
), f(c
2
)-f(c
1
)=f’(ε
2
)(c
2
-c
1
),ε
2
∈(c
1
,c
2
),... f(b)-f(c
n-1
)=f’(ε
n
)(b-c
n-1
),ε
n
∈(c
n-1
,b), 从而有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/L1A4777K
0
考研数学二
相关试题推荐
曲线的渐近线的条数为()
求函数z=xy(4一x—y)在x=1.y=0,x+y=6所围闭区域D上的最大值与最小值.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
求下列函数在指定点处的二阶偏导数:
设曲线L过点(1,-1),L上任意一点P(x,y)处的切线交x轴于点T,O为坐标原点,若|PT|=|OT|,求曲线L的方程。
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f″(x)<0,且f(x)在[0,1]上的最大值为M.求证:自然数n,存在唯一的xn∈(0,1),使得f′(xn)=.
设A,B均为n阶矩阵,且AB=A+B,则(1)若A可逆,则B可逆(2)若B可逆,则A+B可逆(3)若A+B可逆,则AB可逆(4)A—E恒可逆上述命题中,正确的命题共有()
下列命题正确的是().
已知其中a<b<c<d,则下列说法错误的是()
f(x)在点x=x。处可微,是f(x)在点x=x。处连续的[].
随机试题
模拟信号
引起流行性脑脊髓膜炎的致病菌是革兰阳性双球菌。()
周某于1999年7月某晚将一名女青年骗到家中,将其强奸后杀害。周某的父母发现这一情况后,马上动员周某去公安局自首,周某不肯去。于是周父在家看好周某,周母去公安局报告。到了公安局,周母恰遇在公安局任副局长的亲戚田某,周母即把情况向田某说明。田某说:“杀人要偿
负荷计算的目的是()。
建设工程组织流水施工时,其特点包括()。
某私营企业2006年3月15日领取了工商营业执照(该企业注册资金500万元),之后设置了账簿,进行会计核算。2008年12月份,业主感到自身账簿核算很不规范,容易被查出问题,便将开业以来的账簿及发票进行了销毁,后被主管税务机关发现,受到严厉的处罚。根据上
在最佳现金持有量的存货模式中,若每次证券变现的交易成本降低,而预期现金需要总量增加,则最佳现金持有量()。
新课改与新课程标准的价值取向是什么?
你所在的部门是窗口部门。平时有很多的电话打入,而且大多都不是找你的部门办事。而是其他的部门,已经影响到你部门的正常工作。对此你怎么办?
Cryingandwakingupinthemiddleofnightareroutineduringanynewborn’sfirstfewmonths.Butifthosecryingepisodescont
最新回复
(
0
)