首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)可导,下述命题: ①F’(x)为偶函数的充要条件是F(x)为奇函数; ②F’(x)为奇函数的充要条件是F(x)为偶函数; ③F’(x)为周期函数的充要条件是F(x)为周期函数. 正确的个数是 ( )
设F(x)可导,下述命题: ①F’(x)为偶函数的充要条件是F(x)为奇函数; ②F’(x)为奇函数的充要条件是F(x)为偶函数; ③F’(x)为周期函数的充要条件是F(x)为周期函数. 正确的个数是 ( )
admin
2018-12-21
117
问题
设F(x)可导,下述命题:
①F
’
(x)为偶函数的充要条件是F(x)为奇函数;
②F
’
(x)为奇函数的充要条件是F(x)为偶函数;
③F
’
(x)为周期函数的充要条件是F(x)为周期函数.
正确的个数是 ( )
选项
A、0.
B、1.
C、2
D、3.
答案
B
解析
②是正确的.设F
’
(x)=f(x)为奇函数,则
φ(x)=∫
0
x
f(t)dt必是偶函数.证明如下:
φ(-x)=∫
0
-x
f(t)dt=∫
0
x
f(-t)-dt=∫
0
x
f(t)dt=φ(x).
又因f(x)的任意一个原函数必是φ(x)﹢C的形式,所以f(x)的任意一个原函数必是偶函数.必要性证毕.
设F(x)为偶函数,则F(x)=F(-x),
两边对x求导,得F
’
(x)=-F
’
(-x)
所以F
’
为基函数,充分性证毕.
①是不正确的.反例:(x
3
﹢1)
’
=3x
2
为偶函数,但x
3’
﹢1并非奇函数,必要性不成立.
③是不正确的.反例:(sin x﹢x)
’
=cos x﹢1为周期函数,但sin x﹢x不是周期函数,必要性不成立.
转载请注明原文地址:https://kaotiyun.com/show/U8j4777K
0
考研数学二
相关试题推荐
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βr线性表示,则【】
(2014年)设二次型f(χ1,χ2,χ3)=χ12-χ22+2aχ1χ3+4χ2χ3的负惯性指数为1,则a的取值范围是_______.
(2007年)设函数y=,则y(n)(0)=_______.
(2007年)曲线y=±ln(1+eχ)渐近线的条数为【】
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知=3(1+t)。
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
已知A=,求A的特征值、特征向量,并判断A能否相似对角化,说明理由.
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2…,bn,2n)T.试写出线性方程组的通解,并说明理由.
随机试题
关系模型的特点不包括()
脊髓位于________内,上端在枕骨大孔处连接脑的________;下端成年人约平第________腰椎体下缘。
幼儿对住院反应的主要护理措施,错误的是()
A.凹逆散B.逍遥散C.大柴胡汤D.葛根芩连汤E.小柴胡汤和解少阳,内泻热结的代表方剂是
肉瘤的特点是
A.转移癌B.恶性癌C.交界癌D.癌前病变E.早期癌黑色素瘤属于
效力未定的民事行为的类型包括( )。
下列关于广告主广告部门的职能,说法错误的是()。
2014年7月1日开始实施的《事业单位人事管理条例》指出,对事业单位人员的处分包括:
Thenatureoflightisnotwhollyknown,butitisgenerallybelievedtobematter,asinits(1)______,itobeysthelaws(2)____
最新回复
(
0
)