首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)可导,下述命题: ①F’(x)为偶函数的充要条件是F(x)为奇函数; ②F’(x)为奇函数的充要条件是F(x)为偶函数; ③F’(x)为周期函数的充要条件是F(x)为周期函数. 正确的个数是 ( )
设F(x)可导,下述命题: ①F’(x)为偶函数的充要条件是F(x)为奇函数; ②F’(x)为奇函数的充要条件是F(x)为偶函数; ③F’(x)为周期函数的充要条件是F(x)为周期函数. 正确的个数是 ( )
admin
2018-12-21
138
问题
设F(x)可导,下述命题:
①F
’
(x)为偶函数的充要条件是F(x)为奇函数;
②F
’
(x)为奇函数的充要条件是F(x)为偶函数;
③F
’
(x)为周期函数的充要条件是F(x)为周期函数.
正确的个数是 ( )
选项
A、0.
B、1.
C、2
D、3.
答案
B
解析
②是正确的.设F
’
(x)=f(x)为奇函数,则
φ(x)=∫
0
x
f(t)dt必是偶函数.证明如下:
φ(-x)=∫
0
-x
f(t)dt=∫
0
x
f(-t)-dt=∫
0
x
f(t)dt=φ(x).
又因f(x)的任意一个原函数必是φ(x)﹢C的形式,所以f(x)的任意一个原函数必是偶函数.必要性证毕.
设F(x)为偶函数,则F(x)=F(-x),
两边对x求导,得F
’
(x)=-F
’
(-x)
所以F
’
为基函数,充分性证毕.
①是不正确的.反例:(x
3
﹢1)
’
=3x
2
为偶函数,但x
3’
﹢1并非奇函数,必要性不成立.
③是不正确的.反例:(sin x﹢x)
’
=cos x﹢1为周期函数,但sin x﹢x不是周期函数,必要性不成立.
转载请注明原文地址:https://kaotiyun.com/show/U8j4777K
0
考研数学二
相关试题推荐
(2015年)设矩阵,若集合Ω={1,2}则线性方程组Aχ=b有无穷多解的充分必要条件为【】
(2003年)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
(2009年)设α,β为3维列向量,βT为β的转置.若矩阵αβT相似于,则βTα=_______.
(2006年)设函数y=f(χ)具有二阶导数,且f′(χ)>0,f〞(χ)>0,△χ为自变量χ在点χ0处的增量,△y与dy分别为f(χ)在点χ0处对应的增量与微分,若△χ>0,则【】
(2012年)设区域D由曲线y=sinχ,χ=±,y=1围成,则(χy5-1)dχdy=【】
(1989年)证明方程lnχ=在区间(0,+∞)内有且仅有两个不同实根.
求方程=(1一y2)tanx的通解以及满足y(0)=2的特解.
如图8.12所示.[*]原式=[*]
[*]由于因此原式=eln2/2=
e-2所以原式=e-2.
随机试题
某智能停车场泊车的泊车位置由电脑随机派位生成。现有两排车位。每排4个,有4辆不同的车需要泊车。泊车要求至少有一车与其他车不同排.且甲乙两车在同一排。则电脑可生成几种派位方式?
斯宾塞的社会学理论包括【】
膝关节滑膜结核局部治疗首选
毛果芸香碱不具有的药理作用是
隐孢子虫随宿主粪便排出体外的虫体发育阶段是
细胞膜内外正常的Na+和K+浓度差的形成和维持是由于
直接融资是指不需要任何中介机构运作就融通到资金的一种融资方式。()
强调军事体育训练和政治道德灌输,教育内容单一,教育方法严厉的是雅典的教育。()
Manistheonlyanimalthatlaughs.Whyisthistrue?Whatmakesusrespondaswe【C1】______topleasurableexperiences?Whatis
DearSir,MickeyMouseisoneoftheleadingcompaniesintoyretailinglocatedintheUK.Wehaveoutletsthroughoutthewh
最新回复
(
0
)