首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布。现随机地取16只,设它们的寿命是相互独立的。求这16只元件的寿命的总和大于1 920小时的概率。
根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布。现随机地取16只,设它们的寿命是相互独立的。求这16只元件的寿命的总和大于1 920小时的概率。
admin
2019-01-19
91
问题
根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布。现随机地取16只,设它们的寿命是相互独立的。求这16只元件的寿命的总和大于1 920小时的概率。
选项
答案
根据独立同分布中心极限定理,假设X表示电器元件的寿命,则X的概率密度为 [*] 随机取出16只元件,其寿命分别用X
1
,X
2
,…,X
16
表示,且它们相互独立,同服从均值为100的指数分布,则16只元件的寿命的总和近似服从正态分布。设寿命总和为Y=[*]X
i
,其中E(X
i
)=100, D(X
i
)=100
2
,由此得 E(Y)=[*]E(X
i
)=16×100=1 600,D(Y)=[*]D(X
i
)=16×100
2
, 由独立同分布中心极限定理可知,Y近似服从正态分布Ⅳ(1 600,16×100
2
),于是 P{Y>1920}=l·P{Y≤1920}=1一P[*] =1一P[*]≈1一Φ(0.8)=1—0.788 1=0.211 9。
解析
转载请注明原文地址:https://kaotiyun.com/show/L9P4777K
0
考研数学三
相关试题推荐
一个罐子里装有黑球和白球,黑、白球之比为R:1,现有放回地一个接一个地抽球,直到抽到黑球为止,记X为所抽的白球数.这样做了n次以后,我们获得一组样本:X1,X2,…,Xn.基于此,求R的最大似然估计.
某种清漆的9个样品的干燥时间(小时)为:6.5,5.8,7,6.5,7,6.3,5.6,6.1,5.设干燥时间X~N(μ,σ2),求μ的置信度为0.95的置信区间.在(1)σ=0.6(小时);(2)σ未知.两种情况下作.(u0.975=1.96,t0.97
求极限,记此极限函数为f(χ),求函数f(χ)的间断点并指出其类型.
设总体X的分布函数为其中参数θ(0<θ<1)未知.X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.求参数θ的矩估计量;
当x→0时,f(x)=ln(1+x)一(ax2+bx)与g(x)=xtanx是等价的无穷小,则常数a,b的取值为
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵A=,求线性方程组Ax=b有解的概率.
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
设二维随机变量(X,Y)在区域D=((x,y)|0<x<1,x2<)}上服从均匀分布.令(1)写出(X,Y)的概率密度f(x,y);(2)问U与X是否相互独立?并说明理由;(3)求Z=U+X分布函数F(x).
证明下列不等式:
证明不等式3x<tanx+2sinx,x∈(0,)。
随机试题
A公司是美国的一家高科技公司。创立之初,主要开发和销售个人电脑,截至2015年致力于设计、开发和销售消费电子、计算机软件、在线服务和个人计算机。公司采用特殊的标识,而这个标识象征着A公司的企业文化与设计理念:偏执,创新,注重智慧,朝气,富于生命力。这种企业
收入分配:基尼系数()。
试述语言的符号特性。
甲产品的直接材料由A、B两种材料构成,其用量标准和价值标准见下表。计算该产品的直接材料标准成本。
氧进出于细胞的方式是()。
用于血液分析仪分析的血液标本,保存的温度应在
患者,女性,60岁。既往糖尿病病史10余年,高血压病史5年。因反复胸闷、胸痛10天入院。查:BP160/100mmHg,双肺呼吸音粗,未闻及干湿啰音,心脏不大,无杂音。心电图示I、aVL导联Q波形成。用于确诊的首选最佳检查是
职业性有害因素对妇女产生的异常妊娠结局不包括
AmericanwriterRobertFrostwasthePulitzerwinnerwith______times.
专业技术职务评聘的基础是()。
最新回复
(
0
)