首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(χ1,χ2,χ3)=2χ12+χ22-4χ32-4χ1χ2-2χ2χ3的标准形是 【 】
二次型f(χ1,χ2,χ3)=2χ12+χ22-4χ32-4χ1χ2-2χ2χ3的标准形是 【 】
admin
2017-06-26
25
问题
二次型f(χ
1
,χ
2
,χ
3
)=2χ
1
2
+χ
2
2
-4χ
3
2
-4χ
1
χ
2
-2χ
2
χ
3
的标准形是 【 】
选项
A、2y
1
2
-y
2
2
一3y
3
2
B、-2y
1
2
-y
2
2
-3y
3
2
C、2y
1
2
+y
2
2
D、2y
1
2
+y
2
2
+3y
3
2
答案
A
解析
f即不正定(因f(0,0,1)=-4<0),也不负定(因f(1,0,0)=2>0),故B、D都不对.
又f的秩=矩阵
的秩=3,
故C不对,只有A正确.
或用配方法:f=2(χ
1
-χ
2
)
2
-χ
2
2
-4χ
3
2
-2χ
2
χ
3
=2(χ
1
-χ
2
)
2
-(χ
2
+χ
3
)
2
-3χ
3
2
=2y
1
2
-y
2
2
-3y
3
2
,其中所作满秩线性变换为
故A正确.
转载请注明原文地址:https://kaotiyun.com/show/oNH4777K
0
考研数学三
相关试题推荐
证明方程在区间(0,+∞)内有且仅有两个不同实根.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有().
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是().
设4维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
设当时,求矩阵B;
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.求正交变换x=Qy化二次型为标准形,并写出所用坐标变换.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
设有n台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,….n).用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2.…,Xn设E(Xi)=θ(i=1,2,…,n),问k1,k2,…,k3应取何值,才能在使用估计θ时,无偏,并
随机试题
行政法规可以设定除()以外的行政处罚。
甲、乙工程队需要在规定的工期内完成某项工程,若甲队单独做,则要超工期9天完成,若乙队单独做,则要超工期16天才能完成,若两队合做,则恰好按期完成。那么,该项工程规定的工期是()。
下列选项中,用户可以使用的合法的IP地址是()。
营弗陛巨幼细胞性贫血患儿特征性临床表现是
脱水征象可见
不属于地西泮作用特点的是
有机磷农药吸入人体后,分布浓度最高的器官是()。
会议工作人员的主要选拔方法不包括()。
属于HAMD因子的是()。
Afewdecadesago,theworldbankingcommunityinventednewElectronicFundsTransfer(EFT)systemstomovemoneymoreefficiently
最新回复
(
0
)