首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是二阶矩阵,|A|<0,A2=E,且B满足B2=E,AB=-BA. 证明存在二阶可逆矩阵P,使得 P-1AP=且P-1BP=.
设A,B是二阶矩阵,|A|<0,A2=E,且B满足B2=E,AB=-BA. 证明存在二阶可逆矩阵P,使得 P-1AP=且P-1BP=.
admin
2022-03-23
106
问题
设A,B是二阶矩阵,|A|<0,A
2
=E,且B满足B
2
=E,AB=-BA.
证明存在二阶可逆矩阵P,使得
P
-1
AP=
且P
-1
BP=
.
选项
答案
由AB=-BA,等式两边同时左乘P
1
-1
,右乘P
1
,有P
1
-1
ABP
1
=-P
1
-1
BAP
1
,进一步 P
1
-1
AP
1
P
1
-1
BP
1
=-P
1
-1
BP
1
P
1
-1
AP
1
记C=P
1
-1
AP
1
,D=P
1
-1
BP
1
,且由上一问得知,C=[*],即CD=-DC,也即 [*] 解之,得d
1
=d
4
=0,故P
1
-1
BP
1
=[*],即BP
1
=[*]P
1
-1
,又B
2
=E,即 [*] P
2
-1
(P
1
-1
BP
1
)P
2
=[*] 记P=P
1
P
2
,同时有 P
-1
AP=P
2
-1
(P
1
-1
AP
1
)P
2
=[*] 综上,P即为所求。
解析
转载请注明原文地址:https://kaotiyun.com/show/LBR4777K
0
考研数学三
相关试题推荐
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于().
设z=x2+y2一2ln|x|一2ln|y|(x≠0,y≠0),则下列结论正确的是
设常数λ>0,而级数收敛,则级数
设随机变量X的分布函数F(x)只有两个间断点,则().
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
(96年)设X1,X2,…,Kn是来自总体X的简单随机样本.已知EX4=ak(k=1,2,3,4),证明当n充分大时,随机变量Zn=近似服从正态分布,并指出其分布参数.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT.
设α1,α2,…,αs都是实的n维列向量,规定n阶矩阵A=α1α1T+α2α2T+…+αsαsT。(Ⅰ)证明A是实对称矩阵;(Ⅱ)证明A是负惯性指数为0;(Ⅲ)设r(α1,α2,…,αs)=k,求二次型XTAX的规范性。
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。(Ⅰ)证明矩阵A能相似于对角矩阵;(Ⅱ)若α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A。
的渐近线条数为().
随机试题
依照法律、法规规定应当公布但没有公布的规范性文件,不得作为实施行政管理的依据。()
Word2010中,在下列()视图方式下不能编辑文档。
Wewillagreetodowhatyourequire______him.
11岁患儿,右肘部摔伤3小时。查体:右肘关节半屈位,活动受限,明显肿胀及压痛,肘后三角关系正常,桡动脉搏动消失。治疗应采取
急性感染性多发性神经根炎最危险的并发症是
[背景资料]某办公楼工程,由于设计未完成,工程性质已明确但工程量还难以确定,双方通过多次协商,施工总承包单位(以下简称“乙方”)按《建设工程施工合同(示范文本)》(GF-1999—0201)与建设单位(以下简称“甲方”)采用总价合同形式签订了施工总
“尽职而不越位、帮忙而不添乱、切实而不表面”,“协商不代替、监督不对立,为了大目标、同唱一台戏。”概括了政协的主要职能是()。
澳门特别行政区行政机关的主要官员的任职条件包括()
The_____talksbetweenChinaandtheUnitedStateswerethebaseofthelateragreement.
A、Thepickuptimeisnotscheduled.B、Extrapackagingisrequired.C、Valuablesareeasilylost.D、Thepricemightbetoohigh.D
最新回复
(
0
)