设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0. (1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[一a,a]上至少存在一点η,使a3f"(η)=3∫一aaf(x)dx.

admin2019-04-17  45

问题 设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.
(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
(2)证明在[一a,a]上至少存在一点η,使a3f"(η)=3∫一aaf(x)dx.

选项

答案(1)对任意的x∈[一a,a] f(x)=f(0)+f’(0)x+[*] 其中ξ在0与x之间. (2)∫一aa(x)dx=∫一aa f’(0)xdx+∫一aa[*]∫一aax2f"(ξ)dx 因为f"(x)在[一a,a]上连续,故对任意的x∈[一a,a],有m≤f"(x)≤M,其中M,m分别为f"(x)在[一a,a]上的最大,最小值,所以 [*] 因而由f"(x)的连续性知,至少存在一点η∈[一a,a],使 f"(η)=[*]∫一aaf(x)dx 即 a3f"(η)=∫一aaf(x)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/LDV4777K
0

最新回复(0)