首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0. (1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[一a,a]上至少存在一点η,使a3f"(η)=3∫一aaf(x)dx.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0. (1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[一a,a]上至少存在一点η,使a3f"(η)=3∫一aaf(x)dx.
admin
2019-04-17
64
问题
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.
(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
(2)证明在[一a,a]上至少存在一点η,使a
3
f"(η)=3∫
一a
a
f(x)dx.
选项
答案
(1)对任意的x∈[一a,a] f(x)=f(0)+f’(0)x+[*] 其中ξ在0与x之间. (2)∫
一a
a
(x)dx=∫
一a
a
f’(0)xdx+∫
一a
a
[*]∫
一a
a
x
2
f"(ξ)dx 因为f"(x)在[一a,a]上连续,故对任意的x∈[一a,a],有m≤f"(x)≤M,其中M,m分别为f"(x)在[一a,a]上的最大,最小值,所以 [*] 因而由f"(x)的连续性知,至少存在一点η∈[一a,a],使 f"(η)=[*]∫
一a
a
f(x)dx 即 a
3
f"(η)=∫
一a
a
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/LDV4777K
0
考研数学二
相关试题推荐
按第一列展开,得:[*]
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
设A=,求A的特征值,并证明A不可以对角化.
设A=,求与A乘积可交换的所有矩阵.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
已知对于n阶方阵A,存在自然数k,使得Ak=O.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
求不定积分∫χ3dχ.
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
设m,n均是正整数,则反常积分∫01dx的收敛性()
设3阶实对称矩阵A的特征值为1,2,3,η1=(-1,-1,1)T和η2=(1,-2,-1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
随机试题
netposition
血站违反献血法规定,向医疗机构提供不符合国家规定标准的血液的,应当医疗机构的医务人员违反献血法规定,将不符合国家规定标准的血液用于患者的应当
患者,女,55岁。近1年来反复出现颜面及下肢浮肿,面色无华,乏力气短,腰膝酸软,五心烦热,咽干,舌红,少苔,脉沉细。尿蛋白(++),伴有镜下血尿。应首先考虑的诊断是()
王某代甲公司与乙公司签订合同的行为属于什么性质?甲公司是否应向乙公司支付货款?
使用降阻剂时,一般认为垂直极灌降阻剂直径以( )为好。
甲企业为增值税一般纳税人,与客户签订合同销售一批商品,由于货款收回存在较大不确定性,甲企业未确认该项业务的销售收入,商品已经发出且纳税义务已发生,假定不考虑其他因素,下列关于该项销售业务的会计处理中正确的有()。
羽毛球世界锦标赛在巴黎举行,中国女子羽毛球队的小蒋、小朱和小梁报名参加女子单打的资格赛。她们三人至少有一入取得了参赛资格。已知:(1)所有资格赛成绩合格的报名者在各种尿检中只有呈阴性才能获得参赛资格。(2)她们三人全部通过了资格赛,而且
Howmanyplanetsarethereinthesolarsystemrevolvingaroundthesun?
A、Harmtosingersdonebysmokyatmospheres.B、Sideeffectsofsomecommondrugs.C、Voiceproblemsamongpopsingers.D、Hardship
Aristotledefinedafriendas"asinglesouldwellingintwobodies".Howmanyfriendswehave,andhoweasilywemake,maintain
最新回复
(
0
)