首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶实对称矩阵A正定的充分必要条件是( )
n阶实对称矩阵A正定的充分必要条件是( )
admin
2016-05-31
27
问题
n阶实对称矩阵A正定的充分必要条件是( )
选项
A、二次型x
T
Ax的负惯性指数为零.
B、存在可逆矩阵P使P
-1
AP=E.
C、存在n阶矩阵C使A=C
-1
C.
D、A的伴随矩阵A
*
与E合同.
答案
D
解析
选项A是必要不充分条件.这是因为r(f)=p+q≤n,
当q=0时,有r(f)=p≤n.此时有可能p<n,故二次型x
T
Ax不一定是正定二次型.因此矩阵A不一定是正定矩阵.例如f(x
1
,x
2
,x
3
)=
选项B是充分不必要条件.这是因为P
-1
AP=E表示A与E相似,即A的特征值全是1,此时A是正定的.但只要A的特征值全大于零就可保证A正定,因此特征值全是1是不必要的.
选项C中的矩阵C没有可逆的条件,因此对于A=C
T
C不能说A与层合同,也就没有A是正定矩阵的结论.例如
显然矩阵不正定.
关于选项D,由于
所以D是充分必要条件.
转载请注明原文地址:https://kaotiyun.com/show/LGT4777K
0
考研数学三
相关试题推荐
党的政治建设的首要任务是()。
人的活动具有目的性和自觉性,这是人与其他动物的一个很重要的区别。人生目的是指生活在一定历史条件下的人,对“人为什么活着”这一人生根本问题的认识和回答,是人在人生实践中关于自身行为的根本指向和人生追求。人生目的在人生实践中具有的作用是()
导致经济全球化迅猛发展的坚实基础是()。
2019年5月15日,来自亚洲47个国家和五大洲的各方嘉宾,出席亚洲文明对话大会,共商亚洲文明发展之道,共话亚洲合作共赢大计,致力深化文明交流互鉴,致力务实共建亚洲命运共同体、人类命运共同体的人文基础。这是亚洲文明交流互鉴的重要历史节点,是人类文明发展的重
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
验证下列函数满足波动方程utt=a2uxx:(1)u=sin(kx)sin(akt);(2)u=ln(x+at);(3)u=sin(x-at).
行列式中元素2的代数余子式为_____.
随机试题
以下哪一种技术属于频谱多普勒技术
某患者,口干唇燥,大便燥结,不思饮食,干呕呃逆,面色潮红,甚则口糜,舌光红而干,脉细数。为
李某为了牟利,未经著作权人许可,私自复制了若干部影视作品的VCD,并以批零兼营等方式销售,销售金额为11万元,其中纯利润6万元。李某的行为构成何罪?
在下列情况中,可对所涉及土地使用权提前收回的是()。
有财产担保债权人对下列事项中,不享有表决权的是()。
认知疗法的基本治疗过程一般不包括以下哪一个?()
小学教师处理学生注意方面的性别差异应该()。
一切真知归根到底都来源于实践。人的知识不外乎直接经验和间接经验,直接经验和间接经验的关系是()
TheworkingplaceofJacksonwasfarawayfromhishome.Colindidn’twanttowritetheletterforJackson.
Listentopartofalectureinazoologyclass.Professor:Asyouknowfromthetextbook,mimicryisn’tlimitedtoinsects,but
最新回复
(
0
)