首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α3满足Aα3=α2+α3. 证明α1,α2,α3线性无关.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α3满足Aα3=α2+α3. 证明α1,α2,α3线性无关.
admin
2017-10-21
16
问题
已知α
1
,α
2
都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α
3
满足Aα
3
=α
2
+α
3
.
证明α
1
,α
2
,α
3
线性无关.
选项
答案
根据特征向量的性质,α
1
,α
2
都是A的特征向量,特征值不相等,于是它们是线性无关的.根据定理3.2,只用再证明α
3
不可用α
1
,α
2
线性表示. 用反证法.如果α
3
可用α
1
,α
2
表示,设α
3
=c
1
α
1
+c
2
α
2
,用A左乘等式两边,得α
2
+α
3
=一c
1
α
1
+c
2
α
2
,减去原式得 α
2
=一2c
1
α
1
, 与α
1
,α
2
线性无关矛盾,说明α
3
不可用α
1
,α
2
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/LOH4777K
0
考研数学三
相关试题推荐
设xy=xf(x)+yg(z),且xf’(z)+yg’(z)≠0,其中z=z(x,y)是z,y的函数.证明:
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
设A,B皆为n阶矩阵,则下列结论正确的是().
就a,b的不同取值,讨论方程组解的情况.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设(1)判断X,Y是否独立,说明理由;(2)判断X,Y是否不相关,说明理由;(3)求Z=X+Y的密度.
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
f(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2一2A=O,该二次型的规范形为________.
随机试题
目前对基金信息披露进行监管的部门主要是()
四季を短歌の重要な主題としたのは平安時代だが、江戸時代は季語によって季節を示す手法を重視した。それが組織化されると、いわゆる「歳時記」が作られる。短歌では「春すぎて夏来にけらし…」ということができる。春すぎて秋や冬の来ることはないから、念の入った話だが、そ
简述以结构工资为原理的长处。
在PowerPoint2010的大纲窗格中,不能进行的操作是()
正常人T波的方向一般
水肿初期,全身浮肿明显,饮食应注意
出生8天的新生儿居室的温度和湿度应保持在()
根据企业所得税法律制度的规定,在计算企业应纳税所得额时,除国务院财政、税务主管部门另有规定外,有关费用支出不超过规定比例的准予扣除,超过部分,准予在以后纳税年度结转扣除。下列各项中,属于该有关费用的是()。
有民事行为能力的公民在被宣告死亡期间实施的民事法律行为()。
2011年,浙江省实现旅游总收入4080.3亿元,比上年增长23.2%。其中,接待国内旅游者3.43亿人次,增长16.3%,实现国内旅游收入3785.3亿元,增长24.3%;接待入境旅游者774万人次,增长13.0%,实现旅游外汇收入45.4亿美元,增长1
最新回复
(
0
)