首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列结论是否正确?为什么? (Ⅰ)若函数f(χ),g(χ)均在χ0处可导,且f(χ0)=g(χ0),则f′(χ0)=g′(χ0); (Ⅱ)若χ∈(χ0-δ,χ0+δ),χ≠χ0时f(χ)=g(χ),则f(χ)与g(χ)在χ=χ0处有相同
判断下列结论是否正确?为什么? (Ⅰ)若函数f(χ),g(χ)均在χ0处可导,且f(χ0)=g(χ0),则f′(χ0)=g′(χ0); (Ⅱ)若χ∈(χ0-δ,χ0+δ),χ≠χ0时f(χ)=g(χ),则f(χ)与g(χ)在χ=χ0处有相同
admin
2018-08-12
94
问题
判断下列结论是否正确?为什么?
(Ⅰ)若函数f(χ),g(χ)均在χ
0
处可导,且f(χ
0
)=g(χ
0
),则f′(χ
0
)=g′(χ
0
);
(Ⅱ)若χ∈(χ
0
-δ,χ
0
+δ),χ≠χ
0
时f(χ)=g(χ),则f(χ)与g(χ)在χ=χ
0
处有相同的可导性;
(Ⅲ)若存在χ
0
的一个邻域(χ
0
-δ,χ
0
+δ),使得χ∈(χ
0
-δ,χ
0
+δ)时f(χ)=g(χ),则f(χ)与g(χ)在χ
0
处有相同的可导性.若可导,则f′(χ
0
)=g′(χ
0
).
选项
答案
(Ⅰ)不正确.函数在某点的可导性不仅与该点的函数值有关,还与该点附近的函数值有关.仅有f(χ
0
)=g(χ
0
)不能保证f′(χ
0
)=g′(χ
0
).正如曲线y=(χ)与y=g(χ)可在某处相交但并不相切. (Ⅱ)不正确.例如f(χ)=χ
2
,g(χ)=[*]显然,当χ≠0时f(χ)=g(χ),但f(χ)在χ=0处可导,而g(χ)在χ=0处不可导(因为g(χ)在χ=0不连续). (Ⅲ)正确.由假设可得当χ∈(χ
0
-δ,χ
0
+δ),χ≠χ
0
时 [*] 故当χ→χ
0
时等式左右端的极限或同时存在或同时不存在,而且若存在则相等.再由导数定义即可得出结论.
解析
转载请注明原文地址:https://kaotiyun.com/show/LQj4777K
0
考研数学二
相关试题推荐
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
求方程组的通解.
就a,b的不同取值,讨论方程组解的情况.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)-f(x)=0在(0,1)内有根.
设A为n阶矩阵,且Ak=O,求(E-A)-1.
求函数u=的梯度方向的方向导数.
设=∫0xcos(x-t)2dt确定y为x的函数,求
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的x0,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
设ψ(x)是以2π为周期的连续函数,且φ’(x)=ψ(x),φ(0)=0.(1)求方程y’+ysinx=ψ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
随机试题
患者,女性,25岁,2年来有发作性神志丧失,四肢抽搐,服药不规律,今日凌晨又有发作,意识一直不清醒,来院后又有一次四肢抽搐发作。对癫痫病人进行健康教育,下列哪项错误
对施工图纸和设计文件进行交底应由()来组织进行。
案例五:李先生打算为刚上小学的儿子筹备大一的开支。他准备采用教育储蓄的方式进行。为此,他向理财规划师咨询有关问题。根据案例五,回答下列问题:如果李先生在开立教育储蓄账户的次年,开立一个与教育储蓄账户到期日相同的整存整取定期存款账户,以弥补资金缺口。假
“十三五”规划中提出“努力建设全面小康型旅游大国”是旅游业发展的()。
在2006年,被选为第一批国家级非物质文化遗产的有()
Hereismyideaabouthowafriendislike.Firstly,【M1】______afriendissomeoneyoucanshareyoursecrets.Ifyou【M2】_____
我们从不拒斥时尚,并乐于承认自己在生活中还曾受惠于时尚。但说文学不能脱离时代与不能脱离时尚相比,其间区别是很大的。因为作家不是模特。艺人或设计师,他可以追随时代,但永远不能攀附潮流。因为跟着潮流亦步亦趋,只能使他变成一个受塑者而做不成创造者。并且,这种攀附
设总体X的概率密度为其中参数θ(0<θ<1)未知,X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
下列关于报表的叙述中,正确的是()。
Whenpricesarelowpeoplewillbuymore,andwhenpricesarehightheywillbuyless.Everyshopkeeperknowsthis.Butatthes
最新回复
(
0
)