首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T, (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,证明α1,
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T, (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,证明α1,
admin
2015-05-07
56
问题
已知α
1
=(1,3,5,-1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,-1,7)
T
,
(Ⅰ)若α
1
,α
2
,α
3
线性相关,求a的值;
(Ⅱ)当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
;
(Ⅲ)当a=3时,证明α
1
,α
2
,α
3
,α
4
可表示任一个4维列向量.
选项
答案
(Ⅰ)α
1
,α
2
,α
3
线性相关[*]秩r(α
1
,α
2
,α
3
)<3.由于 [*] 所以a=-3. (Ⅱ)设α
4
=(x
1
,x
2
,x
3
,x
4
)
T
,则有(α
1
,α
4
)=0,(α
2
,α
4
)=0,(α
3
,α
4
)=0,即 [*] 所以α
4
=k(19,-6,0,1)
T
,其中k≠0. (Ⅲ)由于|α
1
,α
2
,α
3
,α
4
| [*] =-12×348k≠0. 所以x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α恒有解,即任一4维列向量必可由α
1
,α
2
,α
3
,α
4
线性表出. 或者由(Ⅰ)知a=3时,α
1
,α
2
,α
3
必线性无关,那么:若 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0, 用[*]左乘上式两端并利用[*]α
1
=[*]α
2
=[*]α
3
=0,有k
4
[*]α
4
=0,又α
4
≠0,故必有k
4
=0. 于是k
1
α
1
+k
2
α
2
+k
3
α
3
=0.由α
1
,α
2
,α
3
线性无关知必有k
1
=0,k
2
=0,k
3
=0,从而α
1
,α
2
,α
3
,α
4
必线性无关.而5个4维列向量必线性相关,因此任一个4维列向量都可由α
1
,α
2
,α
3
,α
4
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/La54777K
0
考研数学一
相关试题推荐
设A是,n阶矩阵,满足AAT=E(E是n阶单位矩阵,AT是A的转置矩阵),且|A|<0,求|A+E|.
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位矩阵.计算行列式|A-3E|的值.
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则().
设求解矩阵方程AX=B.
设矩阵有三个线性无关的特征向量,求满足条件的x,y.
求正数a,b的值,使得椭圆包含圆x2+y2=2y,且面积最小.
计算极限.
平面曲线绕x轴旋转所得曲面为S,求曲面S的内接长方体的最大体积.
设二次型f(χ1,χ2,χ3)=χ12+χ22+χ32+4χ1χ2+4χ1χ3+4χ2χ3,写出f的矩阵A,求出A的特征值,并指出曲面f(χ1,χ2,χ3)=1的名称.
若f’(cosx+2)=tan2x+3sin2x,且f(0)=8,则f(x)=__________.
随机试题
质量体系认汪又叫质量体系注册。()
AX-300型电焊机额定负载持续率为50%,工作周期为5min,求一个周期内其负载时间和空载时间各为多少?
新民主主义的文化纲领是()
贾某在路边将马某打倒在地,劫取其财物。离开时贾某为报复马某之前的反抗,往其胸口轻踢了一脚,不料造成马某心脏骤停死亡。设定贾某对马某的死亡具有过失,下列哪一分析是正确的?(2016年卷二16题,单选)
党对法治工作的领导体现为思想领导、政治领导和组织领导。下列哪一说法是不正确的?(2012年卷一第8题)
根据物权法律制度的规定,下列表述中,不正确的是()。
在判断出现进度偏差的工作是否为关键工作时,下列说法不正确的是________。
影响产业购买者购买决定的主要凶素不包括()。(2008年5月三级真题)
反映个体认识、洞察和反省自身的能力是属于加德纳多元智能理论中的()。
HowmanypeoplewerekilledintheSouthernOaxacastate?
最新回复
(
0
)