首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T, (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,证明α1,
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T, (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,证明α1,
admin
2015-05-07
41
问题
已知α
1
=(1,3,5,-1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,-1,7)
T
,
(Ⅰ)若α
1
,α
2
,α
3
线性相关,求a的值;
(Ⅱ)当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
;
(Ⅲ)当a=3时,证明α
1
,α
2
,α
3
,α
4
可表示任一个4维列向量.
选项
答案
(Ⅰ)α
1
,α
2
,α
3
线性相关[*]秩r(α
1
,α
2
,α
3
)<3.由于 [*] 所以a=-3. (Ⅱ)设α
4
=(x
1
,x
2
,x
3
,x
4
)
T
,则有(α
1
,α
4
)=0,(α
2
,α
4
)=0,(α
3
,α
4
)=0,即 [*] 所以α
4
=k(19,-6,0,1)
T
,其中k≠0. (Ⅲ)由于|α
1
,α
2
,α
3
,α
4
| [*] =-12×348k≠0. 所以x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α恒有解,即任一4维列向量必可由α
1
,α
2
,α
3
,α
4
线性表出. 或者由(Ⅰ)知a=3时,α
1
,α
2
,α
3
必线性无关,那么:若 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0, 用[*]左乘上式两端并利用[*]α
1
=[*]α
2
=[*]α
3
=0,有k
4
[*]α
4
=0,又α
4
≠0,故必有k
4
=0. 于是k
1
α
1
+k
2
α
2
+k
3
α
3
=0.由α
1
,α
2
,α
3
线性无关知必有k
1
=0,k
2
=0,k
3
=0,从而α
1
,α
2
,α
3
,α
4
必线性无关.而5个4维列向量必线性相关,因此任一个4维列向量都可由α
1
,α
2
,α
3
,α
4
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/La54777K
0
考研数学一
相关试题推荐
设,则在下列向量中是A的对应于特征值λ=-2的特征向量的是().
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.求A的特征值并计算limAn.
设方程组问:a,b为何值时,方程组无解;
方程组有解的充要条件是________.
设A为m×n的矩阵,秩r(A)=r,则线性方程组Ax=0有非零解的充要条件是().
设D={(x,y)|x2+y2≤1且x+y≥0},f为连续函数,计算
设函数y(x)(x≥0)二阶可导且y’(z)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设{un}为正项单调递增数列,证明收敛的充要条件是收敛.
已知某股票一年以后的价格X服从对数正态分布,当前价格为10元,且EX=15,DX=4.求其连续复合年收益率的分布.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{丨X丨
随机试题
我国现阶段的非公有制经济是( )
《断魂枪》中写沙子龙:“只是在夜间,他把小院的门关好,熟习熟习他的‘五虎断魂枪’。”这里所表现的沙子龙的性格特征是()
有助于诊断结节性硬化的CT表现是
放射免疫分析(RIA)中当待测抗原量增多时(注:B为结合态的标记抗原,F为游离态的标记抗原)()
治疗胎热不安首选
隐性感染是指
难溶电解质AgCl在浓度为0.01mol/dm3的下列溶液中,溶解度最小的是:
纳税人办理税务登记后,发生()应办理税务变更登记。
构成社会再生产过程的基本环节有()。
By1950.theresultsofattemptstorelatebrainprocessestomentalexperienceappearedratherdiscouraging.Suchvariationsin
最新回复
(
0
)