首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列旋转体的体积V: (Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体; (Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
求下列旋转体的体积V: (Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体; (Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
admin
2017-05-31
41
问题
求下列旋转体的体积V:
(Ⅰ)由曲线y=x
2
,x=y
2
所围图形绕x轴旋转所成旋转体;
(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
选项
答案
(Ⅰ)如图3.2,交点(0,0),(1,1),则所求体积为 V=∫
0
1
π[([*])
2
-(x
2
)dx=π∫
0
1
(x-x
4
)dx =[*] [*] (Ⅱ)如图3.3,所求体积为 y=2π∫
0
2πa
yxdx=2π∫
0
2π
a(1-cost)a(t-sint)a(1-cost)dt =2πa
3
∫
0
2π
(1-cost)
2
(t-sint)dt =2πa
3
∫
0
2π
(1-cost)
2
tdt-2πa
3
∫
-π
π
(1-cost)
2
sintdt =2πa
3
∫
0
2π
(1-cost)
2
tdt [*]2πa
3
∫
-π
π
[1一cos(u+π)]
2
(u+π)du =2πa
3
∫
-π
π
(1+cosu)
2
udu+2π
2
a
3
∫
-π
π
(1+cosu)
2
du =4π
2
a
3
∫
0
π
(1+cosu)
2
du=4π
2
a
3
∫
0
π
(1+2cosu+cos
2
u)du=4π
2
a
3
(π+[*])=6π
3
a
3
. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Lgt4777K
0
考研数学二
相关试题推荐
对二元函数z=f(x,y),下列结论正确的是().
[*]
某工厂生产某产品,日总成本为C元,其中固定成本为200元,每多生产一单位产品,成本增加10元.该商品的需求函数为Q=50—2P,求Q为多少时,工厂日总利润L最大?
利用二阶导数,判断下列函数的极值:(1)y=x3-3x2-9x-5(2)y=(x-3)2(x-2)(3)y=2x-ln(4x)2(4)y=2ex+e-x
求下列极限:
计算下列二重积分:
设生产x单位某产品,总收益R为x的函数:R=R(x)=200x-0.01x2求:生产50单位产品时的总收益、平均收益和边际收益.
A、0B、1C、-π/2D、π/2A判断间断点类型的基础是求函数在间断点处的左、右极限.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设α>0,β>0为任意正数,当χ→∞时将无穷小量:,e-χ按从低阶到高阶的顺序排列.
随机试题
A.血清抗体IgGB.黏膜局部抗体sIgAC.两者均是D.两者均非抵抗轮状病毒的再感染()
用一个字节最多能编出()不同的码。
在脑胶质瘤中,发病率情况依次是
A.中立区排牙B.个性排牙C.下颌弓宽于上颌弓的排牙D.颌间距离小的排牙E.上颌弓长于下颌弓的排牙前牙排成大覆盖(水平开)常用于哪种情况的排牙
大柴胡汤的主治证中无下列何症
施工进度计划的检查应按统计周期的规定定期进行,并应根据需要进行不定期的检查。施工进度计划检查的内容包括()。
假设C公司股票现在的市价为20元,有1股以该股票为标的资产的看涨期权,执行价格为15元,到期时间是6个月。6个月后股价有两种可能:上升25%或者降低20%,无风险利率为每年6%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合6个月后的
()不是“神经症”的主要类型。
班主任建立良好班集体可以采取的基本手段和方法包括()。
下列属于公安领导工作的有()。
最新回复
(
0
)