首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
admin
2016-10-20
90
问题
设A=(a
ij
)是m×n矩阵,β=(b
1
,b
2
,…,b
n
)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b
1
x
1
+b
2
x
2
+…+b
n
x
n
=0的解,证明β可用A的行向量α
1
,α
2
,…,α
m
线性表出.
选项
答案
构造一个联立方程组 [*] 简记为Cx=0,显然,(Ⅲ)的解必是(Ⅰ)的解,又因(Ⅰ)的解全是(Ⅱ)的解,于是(Ⅰ)的解也必全是(Ⅲ)的解,所以(Ⅰ),(Ⅲ)是同解方程组,它们有相同的解空间.从而n-r(A)=n-r(C),即r(A)=r(C),亦即r(α
1
,α
2
,…,α
m
)=r(α
1
,α
2
,…,α
m
,β). 因此极大线性无关组所含向量个数相等,这样α
1
,α
2
,…,α
m
的极大线性无关组也必是α
1
,…,α
m
,β的极大线性无关组,从而β可由α
1
,α
2
,…,α
m
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/LlT4777K
0
考研数学三
相关试题推荐
[*]
[*]
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
求下列欧拉方程的通解:(1)x2y〞+3xyˊ+y=0;(2)x2y〞-4xyˊ+6y=x;(3)y〞-yˊ/x+y/xx=2/x;(4)x3y〞ˊ+3x2y〞-2xyˊ+2y=0;(5)x2y〞+xyˊ-4y=x3;(6)x
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程.
差分方程yt+1-yt=t2t的通解为_________.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续;②f(x)在[a,b]上可积;③f(x)在[a,b]上可导;④f(x)在[a,b]上存在原函数.以P→Q表示由性质P可推出性质Q,则有()
随机试题
脾肾阳虚,固摄无权之久泻久痢,泻下无度,滑脱不禁者。治宜
下列哪一位不是“金元四大家”
鉴别流脑和乙脑最有意义的是()
临床最常用的根管消毒方法为
河南省信阳市浉河区董家河镇绿之风希望小学教师李芳,从教以来,二十九年如一日,全面贯彻党的教育方针,辛勤耕耘,无私奉献,在平凡的工作岗位上创造出不平凡的业绩;她积极推进素质教育,注重对学生的思想教育和健全的人格培养,用自己的言行感染学生;她不断学习,始终坚持
资本主义的社会形态是()。
2013年河北省粮食播种面积631.6万公顷,比上年增加1.4万公顷;总产量3365.0万吨,增长3.6%。其中,夏粮产量1402.4万吨,增长3.6%;秋粮产量1962.6万吨,增长3.6%。棉花播种面积48.3万公顷,比上年下降16.5%;总
构建和谐社会的直接的辩证法依据是()。
A、 B、 C、 D、 D
Sometimeswefinditdifficulttorecognizeatruefriend.Hopefullythesetipswillhelpyourecognizethetruefriends.Be
最新回复
(
0
)