首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。 根据t时刻液面
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。 根据t时刻液面
admin
2019-06-28
78
问题
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m
3
/min的速率向容器内注入液体时,液面的面积将以πm
2
/min的速率均匀扩大(假设注入液体前,容器内无液体)。
根据t时刻液面的面积,写出t与φ(y)之间的关系式;
选项
答案
设在t时刻,液面的高度为y,此时液面的面积为 A(t)=πφ
2
(y), 由题设,液面的面积将πm
2
/min的速率均匀扩大,可得 [*] 所以 φ
2
(y)=t+C。 由题意,当t=0时φ(y)=2,代入得C=4,于是得 φ
2
(y)=t+4。 从而 t=φ
2
(y)一4。
解析
转载请注明原文地址:https://kaotiyun.com/show/LpV4777K
0
考研数学二
相关试题推荐
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a1能由a2,a3线性表示;
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,β可由α1,α2,α3线性表出,但表示不唯一,求出一般表达式。
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,β不可由α1,α2,α3线性表出;
设向量α1,α2,…,αn-1是n一1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ1线性无关。
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求矩阵A的特征值;
设函数f(x)=且1+bx>0,则当f(x)在x=0处可导时,f’(0)_________
函数F(x)=∫1x(1一ln)dt(x>0)的递减区间为___________.
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
求极限:.
随机试题
涎腺造影检查的禁忌证为
某车间变电所采用需要系数法计算负荷时,有下列用电设备组:起重机负荷,其中负载持续率为ε=25%的电动机8台,额定容量共计为140kW,负载持续率为ε=40%的电动机12台,额定容量共计为320kW,需要系数Kx=0.2,cosα=0.5;大批生产金额冷加工
机电工程采用横道图来表示施工进度计划时的优点有()。
下列关于绝对购买力平价和相对购买力平价关系的说法中,正确的是()。
按照资本资产定价模式,影响特定股票预期收益率的因素有()。
高级语言的源程序需翻译成机器语言能执行的目标程序才能执行,这种翻译方式有()。
抗日战争爆发后,中国军队取得的第一次重大胜利是()
Directions:Readthetextsfromaninterviewinwhich5peopletalkedabouttheirjobs.Forquestions61to65,matchthenameo
Campshavealwaysreflectedchildren’sdreamsandparents’fears.Inthe1880s,manymiddle-classfamiliesworriedthatindustri
Muchunfriendlyfeelingtowardscomputershasbasedonthefearofwidespreadunemploymentresultingfromtheirintroduction.C
最新回复
(
0
)