首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
admin
2018-04-14
63
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
(Ⅰ)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积。
(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2f(x)/x,证明(Ⅰ)中的x
0
是唯一的。
选项
答案
(Ⅰ)要证存在x
0
∈(0,1),使x
0
f(x
0
)=[*]f(x)dx;令 φ(x)=xf(x)-∫
x
1
f(t)dt, 要证存在x
0
∈(0,1),使φ(x
0
)=0。可以对φ(x)的原函数Ф(x)=∫
0
x
。φ(t)dt使用罗尔定理: Ф(0)=0, Ф(1)=∫
0
1
φ(x)dx=∫
0
1
xf(x)dx-∫
0
1
[∫
x
1
f(t)dt]dx =∫
0
1
xf(x)dx-[x∫
x
1
f(t)dt|
x=0
x=1
+∫
0
1
xf(x)dx]=0, 又由f(x)在[0,1]连续[*]φ(x)在[0,1]连续,Ф(x)在[0,1]连续,在(0,1)可导。根据罗尔定理,存在x
0
∈(0,1),使Ф’(x
0
)=φ(x
0
)=0。 (Ⅱ)由φ’(x)=xf’(x)+f(x)+f(x)=xf’(x)+2f(x)>0,知φ(x)在(0,1)内单调增,故(Ⅰ)中的x
0
是唯一的。
解析
转载请注明原文地址:https://kaotiyun.com/show/TRk4777K
0
考研数学二
相关试题推荐
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使。
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[-2,0)上的表达式;
[*]
设函数y=y(x)由参数方程确定。其中x(t)是初值问题
设二元函数z=xex+y+(x+1)ln(1+y),求dz|(1,0)。
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形.问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠D,使得AB=D,则().
求函数的间断点,并指出其类型.
随机试题
用分光光度法测定脱水蔬菜中的亚硝酸盐含量时,在碱性条件下,亚硝酸盐与对氨基苯磺酸发生重氮化反应后,再与盐酸萘乙二胺结合生成紫红色染料。
Inthissmalltowntherewasnotasinglemanofimportancewhowoulddaretohaveahousekeeperyoungerthansixty,forfearof
A.阿米替林B.舒必利C.氟西汀D.吗氯贝胺E.奋乃静三环类抗精神病药
某房地产开发公司在某市老城区拟开发的一住宅小区项目涉及到拆迁,则房地产公司申领施工许可证前,()。
根据我国《工程造价咨询企业管理办法》的规定,甲级工程造价咨询企业中从事工程造价专业工作的专职人员和取得造价工程师注册证书的专业人员分别不少于()人。
根据《建筑内部装修设计防火规范》(GB50222),关于建筑内部装修,下列说法错误的是()。
运用贴现现金流模型测算股票的内在价值,必须考虑的因素或变量有( )。Ⅰ.市盈率Ⅱ.一定时间内以现金形式表示的每股股利Ⅲ.一定风险程度下现金流的合适贴现率Ⅳ.股票市价
设A是n阶矩阵,满足AAT=E(E是n阶单位矩阵,AT是A的转置矩阵),|A|<0,求|A+E|.
Atsometimeinyourlifeyoumayhaveastrongdesiretodosomethingstrangeorterrible.However,chancesarethatyoudon’t
Conventionalwisdomsaystreesaregoodfortheenvironment.Theyabsorbcarbondioxide—agreenhousegas—fromtheatmosphereand
最新回复
(
0
)