首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1988年)设函数y=y(χ)满足微分方程y〞-3y′+2y=2eχ,其图形在点(0,1)处的切线与曲线y=χ2-χ+1在该点处的切线重合,求函数y的解析表达式.
(1988年)设函数y=y(χ)满足微分方程y〞-3y′+2y=2eχ,其图形在点(0,1)处的切线与曲线y=χ2-χ+1在该点处的切线重合,求函数y的解析表达式.
admin
2021-01-19
82
问题
(1988年)设函数y=y(χ)满足微分方程y〞-3y′+2y=2e
χ
,其图形在点(0,1)处的切线与曲线y=χ
2
-χ+1在该点处的切线重合,求函数y的解析表达式.
选项
答案
特征方程为r
2
-2r+2=0 解得r
1
=1,r
2
=2. 则齐次方程通解为[*]=C
1
e
χ
+C
2
e
2χ
设非齐次方程特解为y
*
=Aχe
χ
,代入原方程得A=-2 故原方程通解为y=C
1
e
χ
+C
1
e
2χ
-2χe
χ
(*) 又由题设y=y(χ)的图形在点(0,1)处切线与曲线y=χ
2
-χ+1在该点的切线重合.由此可知y(0)=1,y′(0)=(2χ-1)|
χ=0
=-1 利用此条件由(*)式可得C
1
=1,C
2
=0 因此所求解为 y=(1-2χ)e
χ
解析
转载请注明原文地址:https://kaotiyun.com/show/Lu84777K
0
考研数学二
相关试题推荐
[*]
A、 B、 C、 D、 A
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:(I)A2;(Ⅱ)矩阵A的特征值和特征向量.
设三阶矩阵三维列向量α=(a,1,1)T.已知Aα与α线性相关,则a=_______
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t=______。
设f(x,y,z)=ex+y2z,其中z:z(x,y)是由方程x+y+z+xyz=0所确定的隐函数,则fy’(0,1,一1)=__________。
求极限
(2009年)没A,B均为2阶矩阵。A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为
(2009年)计算不定积分∫ln(1+)dχ(χ>0).
(2005年试题,23)已知三阶矩阵A的第一行是(a,b,C),a,b,C不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
随机试题
以下属于公理性原则的是:
某甲是国务院证券管理委员会的_工作人员,违反有关上市申请的审批规定,擅自批准不符合上市资格的公司通过申请,这个疏忽导致使许多股民遭受重大损失,甲没有从中谋取任何个人利益。甲的行为构成:()
我国招投标应当遵循的原则是()。
某企业拟开发一种新产品,有四种设计方案可供选择,见下表。根据以上资料,回答下列问题:根据等概率原则,每种状态的概率为1/3,则该企业应该选择方案()。
()可以引用和编辑文本、图像、声音、动画和视频等多种媒体素材。
观察下面这幅漫画。请你对此谈谈看法。
A、 B、 C、 D、 A原数列可化为:分母为差后等比数列,故下一项为36。分子为三级等差数列,故下一项为8+4+18=30。故空缺项应为。
以下哪部作品属于60年代的“黑色幽默”文学,用夸张、超现实的手法将欢乐与痛苦、可笑与可怖、柔情与残酷、荒唐古怪与一本正经糅合在一起?()
Britainhaslawstomakesurethatwomenhavethesameopportunitiesasmenineducation,jobsandtraining.Butit’sstillunus
KeepOurSeasCleanA)Bytheyear2050itisestimatedthattheworld’spopulationcouldhaveincreasedtoaround12billio
最新回复
(
0
)