首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1988年)设函数y=y(χ)满足微分方程y〞-3y′+2y=2eχ,其图形在点(0,1)处的切线与曲线y=χ2-χ+1在该点处的切线重合,求函数y的解析表达式.
(1988年)设函数y=y(χ)满足微分方程y〞-3y′+2y=2eχ,其图形在点(0,1)处的切线与曲线y=χ2-χ+1在该点处的切线重合,求函数y的解析表达式.
admin
2021-01-19
75
问题
(1988年)设函数y=y(χ)满足微分方程y〞-3y′+2y=2e
χ
,其图形在点(0,1)处的切线与曲线y=χ
2
-χ+1在该点处的切线重合,求函数y的解析表达式.
选项
答案
特征方程为r
2
-2r+2=0 解得r
1
=1,r
2
=2. 则齐次方程通解为[*]=C
1
e
χ
+C
2
e
2χ
设非齐次方程特解为y
*
=Aχe
χ
,代入原方程得A=-2 故原方程通解为y=C
1
e
χ
+C
1
e
2χ
-2χe
χ
(*) 又由题设y=y(χ)的图形在点(0,1)处切线与曲线y=χ
2
-χ+1在该点的切线重合.由此可知y(0)=1,y′(0)=(2χ-1)|
χ=0
=-1 利用此条件由(*)式可得C
1
=1,C
2
=0 因此所求解为 y=(1-2χ)e
χ
解析
转载请注明原文地址:https://kaotiyun.com/show/Lu84777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,且方程组Ax=b有解,则
设D:χ2+y2≤R2,则=_______.
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+B,B=.则(A-E)-1=______.
设可导函数y=y(x)由方程=___________。
曲线x=a(cost+tsint),y=a(sint-tcost)(0≤t≤2π)的长度L=________.
设求曲线y=f(x)与它所有水平渐近线及y轴围成图形的面积.
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明:(1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数.(2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
当0≤χ≤1时,0≤[*]≤lnn(1+χ)≤χn.积分得0≤[*]由迫敛定理得[*]
A、 B、 C、 D、 A由积分上、下限知,积分区域D=D1∪D2={(x,y)|0≤x≤1,0≤y≤1)∪{(x,y)|lny≤x≤1,1≤y≤e}={(x,y)|0≤y≤ex,0≤x≤1).原式
被积函数为幂函数与指数函数的乘积,因此采用分部积分法,将幂函数看作u[*]
随机试题
社会工作者通过书信的形式与即将假释出狱的服务对象建立联系,这在司法矫正的过程中属于()。
男性,25岁,双上肢烫伤,急诊入院。其烧伤面积为
治疗盗汗阴虚火旺证的主方是
女性,28岁。近一月以来,口腔溃疡反复发作,心烦,夜晚难以入睡,大便干。1~2日一行。口干不喜饮,小便黄,舌质红,苔腻,脉数。熟大黄的性状鉴别特征是()。
在监理规划的( )内容中应当包含有关监理资料管理和报告制度等内容。
有下列情形之一的证券公司不得申请注册登记为保荐机构()
关于技术转移与技术扩散、技术转让、技术引进之间关系的说法,正确的有()。
某用户是一个垂直管理的机构,需要建设一个视频会议系统,基本需求是:一个中心会场,18个一级分会场,每个一级分会场下面有3~8个二级分会场,所有通信线路为4Mbps,主会场、一级分会场为高清设备,可在管辖范围内自由组织各种规模的会议,也可在同级之间协商后组织
在结构化分析方法中,依据______来进行接口设计。
Thegeographicallocationofacountryanditsphysical【C1】______areveryimportanttoitsdevelopmentand【C2】______.TheUnit
最新回复
(
0
)