首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)已知函数χ=f(χ,y)的全微分dχ=2χdχ-2ydy,并且f(1,1)=2.求f(χ,y)在椭圆域D={(χ,y)|χ2+≤1}上的最大值和最小值.
(2005年)已知函数χ=f(χ,y)的全微分dχ=2χdχ-2ydy,并且f(1,1)=2.求f(χ,y)在椭圆域D={(χ,y)|χ2+≤1}上的最大值和最小值.
admin
2021-01-19
71
问题
(2005年)已知函数χ=f(χ,y)的全微分dχ=2χdχ-2ydy,并且f(1,1)=2.求f(χ,y)在椭圆域D={(χ,y)|χ
2
+
≤1}上的最大值和最小值.
选项
答案
由dz=2χdχ-2ydy可知 z=f(χ,y)=z
2
-y
2
+C 再由f(1,1)=2,得C=2,故 z=f(χ,y)=z
2
-y
2
+2 令[*]=2χ=0,[*]=-2y=0,解得驻点(0,0). 在椭圆χ
2
+[*]=1上,z=χ
2
-(4-4χ
2
)+2,即 z=5χ
2
-2 (-1≤χ≤1) 其最大值为z|
χ=±1
=3,最小值为z|
χ=0
=-2 再与f(0,0)=2比较,可知f(χ,y)在椭圆域D上的最大值为3,最小值为-2.
解析
转载请注明原文地址:https://kaotiyun.com/show/GA84777K
0
考研数学二
相关试题推荐
设f(χ)连续,且满足f(χ)+2∫0χf(t)dt=χ2+,则关于f(χ)的极值问题有().
[*]
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形记为D.求(Ⅰ)D的面积A;(Ⅱ)D绕直线x=1旋转一周所成的旋转体的体积V.
设函数y=f(x)存在二阶导数,且f’(x)≠0.(I)请用y=f(x)的反函数的一阶导数、二阶导数表示;(Ⅱ)求满足微分方程的x与y所表示的关系式的曲线,它经过点(1,0),且在此点处的切线斜率为,它经过点(1,0),且在此点处的切线斜率为,在此曲线
设函数f(x)(x≥0)连续可微,f(0)=1,已知曲线y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积与曲线y=f(x)在[0,x]上的弧长值相等,求f(x).
假设曲线ι1:y=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线ι2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定a的值.
已知y=y(x)是微分方程(x2+y2)dy=dx一dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).(1)证明:y(x)<y0+一arctanx0;
(1995年)微分方程y〞+y=-2χ的通解为_______.
[2014年]当x→0+时,若lnα(1+2x),(1一cosx)1/α均是比x高阶的无穷小,则α的取值范围是().
(1995年)设f(χ)和f(χ)在φ(χ)(-∞,+∞)上有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则【】
随机试题
微波的电子波频率为
喘证的病变部位在()。
西周的“尊尊”原则:()。
微分方程y’=xy,y|x=0=1的解为()。
民用爆破器材是用于非军事目的的各种炸药(起爆药、猛炸药、火药、烟火药)及其制品和()的总称。
建设工程风险识别的( )可避免识别工作效率低和风险识别的主观性的缺陷。
AThoughmanydistinctculturesareprevalentaroundtheworldtoday,thosethatarethemostdominanthaveoriginsinoneofa
=________.
在考生文件夹下,打开文档WORD2.DOCX,按照要求完成下列操作并以该文件名(WORD2.DOCX)保存文档。(1)制作一个3行4列的表格,设置表格居中、表格列宽2厘米、行高0.8厘米;将第2、3行的第4列单元格均匀拆分为两列、将第3行的第2、
Whilebigcorporations______globalbusinessnews,smallcompaniesarechargingintooverseasmarketsatafasterpace.
最新回复
(
0
)