首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)已知函数χ=f(χ,y)的全微分dχ=2χdχ-2ydy,并且f(1,1)=2.求f(χ,y)在椭圆域D={(χ,y)|χ2+≤1}上的最大值和最小值.
(2005年)已知函数χ=f(χ,y)的全微分dχ=2χdχ-2ydy,并且f(1,1)=2.求f(χ,y)在椭圆域D={(χ,y)|χ2+≤1}上的最大值和最小值.
admin
2021-01-19
127
问题
(2005年)已知函数χ=f(χ,y)的全微分dχ=2χdχ-2ydy,并且f(1,1)=2.求f(χ,y)在椭圆域D={(χ,y)|χ
2
+
≤1}上的最大值和最小值.
选项
答案
由dz=2χdχ-2ydy可知 z=f(χ,y)=z
2
-y
2
+C 再由f(1,1)=2,得C=2,故 z=f(χ,y)=z
2
-y
2
+2 令[*]=2χ=0,[*]=-2y=0,解得驻点(0,0). 在椭圆χ
2
+[*]=1上,z=χ
2
-(4-4χ
2
)+2,即 z=5χ
2
-2 (-1≤χ≤1) 其最大值为z|
χ=±1
=3,最小值为z|
χ=0
=-2 再与f(0,0)=2比较,可知f(χ,y)在椭圆域D上的最大值为3,最小值为-2.
解析
转载请注明原文地址:https://kaotiyun.com/show/GA84777K
0
考研数学二
相关试题推荐
已知f(χ)=,则I=dχ=_______.
设函数y(χ)在区间[0,+∞)上有连续导数,并且满足y(χ)=-1+χ+2∫0χ(χ-t)y(t)y′(t)dt.求y(χ).
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组Aχ=0的解,α2=(m,1,1-m)T是方程组(A+E)χ=0的解,则m=________.
计算二重积分其中D是由x轴、y轴与曲线围成的区域,a>0,b>0。
设A是3阶矩阵,有特征值λ1=1,λ2=-1,λ3=0,对应的特征向量分别是ξ1,ξ2,ξ3,k1,k2是任意常数,则非齐次方程组Ax=ξ1﹢ξ2z的通解是()
已知矩阵(Ⅰ)求可逆矩阵P,使(AP)T(AP)为对角矩阵;(Ⅱ)若A+kE正定,求k的取值.
以yOz坐标面上的平面曲线段y=f(z)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为l6πcm3,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm3/s增大,试求曲线y=f(z)的方程.
[2014年]设z=f(x,y)是由e2yz+x+y2+z=确定的函数,则=__________.
(1995年)设f(χ)和f(χ)在φ(χ)(-∞,+∞)上有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则【】
A、 B、 C、 D、 D如图,若区域D表示为X型时,D={(x,y)|0≤x≤1,1-原式=;若区域D表示为Y型时,D1={(x,y)|0≤x≤,0≤y≤1}.D2={(x,y)|0≤x≤2-y,1
随机试题
背景某新建机场经过国家规定的招标、投标程序,决定由某施工单位承接该机场航站楼广播系统建设项目,并签订了相关施工合同。在施工项目开工之前,通常应编制什么文件,来指导实施阶段的项目管理?
如何正确对待犯罪嫌疑人、被告人的供述和辩解?
现时成本会计编制现时成本报表前应()
帕金森病又名________,是一种常见的中老年人神经系统变性疾病。
哮喘治疗的目标是()。
投资估算指标要密切结合行业特点,项目建设的特定条件,在内容上既要贯彻()原则,又要有一定的深度和广度。
2007年,中国人民银行加大了宏观金融调控的力度,灵活运用货币政策工具:第一,运用公开市场操作,2007年累计发行央行票据4.07万亿,其中对商业银行定向发行的3年期央行票据5550亿;第二,适时运用存款准备金率工具,年内共上调人民币存款准备金率10次;
立春过后,大地渐渐从沉睡中苏醒过来。冰雪融化,草木萌发,各种花__开放。再过两个月,燕子__归来。填入横线上最恰当的是()。
简要分析赵孟頫《秋郊饮马图》。
TheWeightExperimentNicolaWaltershasbeentakingpartinexperimentsinScotlandtodiscoverwhyhumansgainandlosewe
最新回复
(
0
)