设B是可逆阵,A和B同阶,且满足A2+AB+B2=O,证明:A和A+B都是可逆阵,并求A一1和(A+B)一1.

admin2021-11-09  28

问题 设B是可逆阵,A和B同阶,且满足A2+AB+B2=O,证明:A和A+B都是可逆阵,并求A一1和(A+B)一1

选项

答案由题设:A2+AB+B2=O,得 A(A+B)=一B2. ① ①式右乘(一B2)一1,得A(A+B)(一B2)一1=E,得A可逆,且 A一1=(A+B)(一B2)一1. ①式左乘(一B2)一1,得(一B2)一1A(A+B)=E,得A+B可逆,且 (A+B)一1=(一B2)一1A.

解析
转载请注明原文地址:https://kaotiyun.com/show/Lvy4777K
0

随机试题
最新回复(0)