首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
admin
2018-07-31
71
问题
设A=(a
ij
)是3阶非零矩阵,|A|为A的行列式,A
ij
为a
ij
的代数余子式.若a
ij
+A
ij
=0(i,j=1,2,3),则|A|=________.
选项
答案
一1.
解析
由A≠O,不妨设a
11
≠0,由已知的A
ij
=一a
ij
(i,j=1,2,3),得
|A|一
a
1j
2
≠0,
及A=一(A
*
)
T
.其中A
*
为A的伴随矩阵.以下有两种方法:
方法1 用A
T
右乘A=一(A
*
)
T
的两端.得
AA
T
=一(A
*
)AT=一(AA
*
)
T
=一(|A|I)
T
,
其中I为3阶单位矩阵,上式两端取行列式,得
|A|
2
=(一1)
3
=|A|
3
,或|A|
2
(1+|A|)=0.
因|A|≠0,所以|A|=一1.
方法2 从A=一(A
*
)
T
两端取行列式,并利用|A
*
|=|A|
2
.得
|A|=(一1)
3
|A
*
|=一|A|
2
,或|A|(1+|A|)=0,
因|A|≠0,所以|A|=一1.
转载请注明原文地址:https://kaotiyun.com/show/Lwg4777K
0
考研数学一
相关试题推荐
设齐次线性方程组为正定矩阵,求a,并求当|X|I=时XTAX的最大值.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设A=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设三阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=_______。
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
临床学习环境组成中,其他专业人员是指【】
肾门向肾内延续的含脂肪的腔称为
患儿,男性,6岁。咳嗽咳痰3天,咳嗽频作,咽痒声重,痰白清稀,鼻流清涕,用通宣理肺丸后病情好转。该患儿最有可能的舌象和脉象是
男性,46岁。不慎跌倒摔伤右肩。以左手托右肘部来诊。头向右倾,体检见右肩下沉,右上肢功能障碍。胸骨柄至右肩峰连线中点隆起,并有压痛,其可能的诊断是
执业药师的执业类别分为
某X公司生产A、B、C三种产品,三种产品近几年的销售情况如图4—1所示。C产品2008年1~12月份的市场销售量见表4—2。B产品所在行业的市场逐渐饱和,市场竞争日益激烈,为了进一步制订企业的竞争策略,该企业委托咨询公司对企业竞争能力与主要竞争对手
梯段改变方向时,平台扶手处最小宽度()。
前三个五年计划的钢产量比后三个五年计划的钢产量少()万吨。
设f(x)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f’’(ξ)-f’(ξ)+1=0.
A、 B、 C、 BAboutthreethousanddollarsanswershowmuch.Choice(A)usesbecause,whichusuallyanswersaw
最新回复
(
0
)