首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是( )
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是( )
admin
2017-01-14
78
问题
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是( )
选项
A、若B=AQ,则A的列向量组与B的列向量组等价。
B、若B=PA,则A的行向量组与B的行向量组等价。
C、若B=PAQ,则A的行(列)向量组与B的行(列)向量组等价。
D、若A的行(列)向量组与矩阵B的行(列)向量组等价,则矩阵A与B等价。
答案
C
解析
将等式B=AQ中的A、B按列分块,设A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),则有
(β
1
,β
2
,…,β
n
)=(α
1
,α
2
,…,α
n
)
表明向量组β
1
,β
2
,…,β
n
可由向量组α
1
,α
2
,…,α
n
线性表示。由于Q可逆,从而有A=BQ
-1
,即(α
1
,α
2
,…,α
n
)=(β
1
,β
2
,…,β
n
)Q
-1
,表明向量组α
1
,α
2
,…,α
n
可由向量组β
1
,β
2
,…,β
n
线性表示,因此这两个向量组等价,故选项A的命题正确。
类似地,对于PA=B,将A与B按行分块可得出A与B的行向量组等价,从而选项B的命题正确。
下例可表明选项C的命题不正确。
设A=
,则P、Q均为可逆矩阵,且
但B的行(列)向量组与A的行(列)向量组不等价。
对于选项D,若A的行(列)向量组与B的行(列)向量组等价,则这两个向量组的秩相同,从而矩阵A与B的秩相同,故矩阵A与B等价(两个同型矩阵等价的充分必要条件是秩相等)。
转载请注明原文地址:https://kaotiyun.com/show/ZPu4777K
0
考研数学一
相关试题推荐
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
设m,n均是正整数,则反常积分的收敛性
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。求S(x)的表达式。
随机试题
2001年6月1日,国家多个部委共同参与的“中国电子口岸”在全国各口岸推广实施,部委的数目是()
虚拟主机是由多个不同的站点共享一台服务器的(),是入门级的站点解决方案。
在资本主义国家的“三权分立”制度中,“三权”包括
______beforeweleavethedayaftertomorrow,weshouldhaveawonderfuldinnerparty.
中经络与中脏腑的区别在于
该病于1921年在肯尼亚首次发现,截至目前曾在非洲、欧洲和美洲等数十个国家流行,多数被及时扑灭。目前我国尚无本病。猪感染该病原后,其临诊症状从急性、亚急性到慢性不等,以高热、皮肤发绀、全身内脏器官广泛出血、呼吸障碍和神经症状为主要特征,发病率和死亡率几乎达
某纺织厂房工程,建筑面积12000m2,地上4层,板式基础。建设单位和某施工单位根据《建设工程施工合同(示范文本)》(GF--1999--0201)签订了施工承包合同。合同约定工程工期按底板、结构、装饰装修三个阶段分别考核,每个阶段提前或延误1d对等奖罚5
下列定额中,属于企业定额性质的是()。
按照我国海关法的有关规定,要获得知识产权的海关保护,必须将其知识产权向海关部署备案申请,提交的备案申请书应包括()。受害人请求海关扣留侵权货物时,应向海关提供()的担保。
ComparedwithB.T.Washington,DuBois’spoliticalstandwas______.Itcanbeinferredfromthelastparagraphthat______.
最新回复
(
0
)